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ABSTRACT
Urban growth consists of horizontal and vertical expansions. An inte-
grative framework for estimating horizontal and vertical expansions of
city urban areas using Landsat images was presented. It includes
following steps: (1) a spectrum-based classifier (here Support Vector
Machine) is first used to preclassify Landsat images; (2) the spectral
similarity-enhanced Markov chain random field cosimulation model is
then applied to postclassify the preclassified images and detect build-
ing shadows; and (3) a morphological operator based on spatial logic
reasoning is used to estimate mid-rise or taller buildings (MTBs) from
detected shadows. Both horizontal urban growth and vertical urban
growth in the main city area of Guangzhou for the time period of
1993–2013 were detected. The accuracy of identified MTBs by sha-
dows was validated to be 78.1% on average for 2013. The case study
indicates that Guangzhou had undergone both horizontal and vertical
urban growth from 1993 to 2013, and vertical urban growth followed
horizontal urban growth successively. The relationships between the
horizontal and vertical urban growth and three major socioeconomic
factors during the studied period were analysed. Results indicate that
both the total area of built-up areas and the total area of detected
MTBs are significantly correlated with population density, real gross
domestic product, and fixed investment (i.e. investment in fixed assets
such as land, buildings), respectively. While population density is the
major driving force of horizontal urban expansion, fixed investment is
the major driving force of vertical urban expansion for the city as a
whole. Although themethod is not perfect currently in detectingMTBs
in various situations and the case study is mainly exploratory, the
proposed framework and the case study can be helpful in quantita-
tively exploring the horizontal urban growth and vertical urban growth
of a city and their causes.

ARTICLE HISTORY
Received 1 December 2016
Accepted 21 February 2017

1. Introduction

By 2014, 54% of the world’s population was dwelling in urban areas. Increasing urban
population is expected in coming decades (Angel et al. 2011), particularly in Africa and
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Asia where rapid urbanization is taking place. 2.5 billion new urban dwellers are
expected by 2050 globally, with 90% of this increase being from Africa and Asia
(Department of Economic and Social Affairs, Population Division, United Nations 2014).
Rapid urbanization drives economic booming, efficiency in resource consumption,
release of poverty, improvement of health facilities, among others (Angel, Sheppard,
and Civco 2005; Henderson 2005; Gozgor and Kablamaci 2015; Gollin, Jedwab, and
Vollrath 2016). However, on the other hand, transforming earth’s land surface from
open spaces to urban areas has significant impact on many aspects of human well-
being and the biophysical environment (e.g. through urban heat island effect, loss of
natural habitat, and biodiversity) at unparalleled scales, because cities are hot spots of
production, consumption, and waste generation (Ash et al. 2008; Grimm et al. 2008;
Hahs et al. 2009; Seto and Shepherd 2009; Schneider, Friedl, and Potere 2009; Seto,
Güneralp, and Hutyra 2012; Güneralp and Seto 2013; Solecki, Seto, and Marcotullio 2013;
He et al. 2014). One negative impact of urbanization on a city is large-scale in-migration,
which demands a carrying capacity beyond what the city can even provide (Saksena
et al. 2014). Therefore, an in-depth understanding of the urban spatial pattern and
dynamic change of a city over time is essential for policy makers and city planners to
conduct better city planning and urban sustainability research (Bagan and Yamagata
2014).

Remote sensing (RS), with relatively low cost, synoptic view and repeatability, has
provided abundant, reliable and multi-temporal data for urban monitoring and map-
ping at various spatial scales (Weng 2002; Miller and Small 2003; Xiao et al. 2006;
Bhatta 2009; Patino and Duque 2013; Guo et al. 2014; Taubenböck et al. 2014; Ban,
Jacob, and Gamba 2015). Urban growth generally includes both horizontal growth
and vertical growth, which are important research topics (Shi et al. 2009). RS has been
widely used for urban horizontal expansion mapping. Medium resolution RS images,
such as Landsat images (30 m × 30 m pixel size), are especially suitable for detecting
urban expansion in a large city due to their relatively large coverage. After analysing
77 cities globally, Huang, Lu, and Sellers (2007) found that urban areas in developing
countries are formed with higher density and compactness than in developed coun-
tries. Tewolde and Cabral (2011) measured the urban sprawl of the Greater Asmara
Area from 1989 to 2009 and predicted the change of built-up area till 2020 with
Landsat Thematic Mapper (TM) images. Multi-temporal Defense Meteorological
Satellite Program-Operational Linescan System (DMSP/OLS) night-time light data
were used to measure urban dynamic horizontal growth over time at regional and
global scales (Zhang and Seto 2011). Schneider (2012) took advantage of the high
temporal resolution of Landsat archives to monitor urban expansion, which has
complex confusion with other land-use/cover types. Changes of built-up infrastruc-
ture in 100 large cities across the world in 11 years were revealed by Frolking et al.
(2013) through combining backscatter power data and night-time light data. Sexton
et al. (2013) employed an empirical method to monitor the long-term urbanization
process around the Washington, District of Columbia–Baltimore, Maryland megalopo-
lis from 1984 to 2010 by using the Landsat archives. Taubenböck et al. (2014)
quantitatively analysed urban evolutions of mega-urban landscape patterns with
multi-temporal multi-source RS data. In order to compare the driving forces of
megacity expansions in China and those in the USA, time-series impervious surface
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area data were derived from Landsat images (Kuang et al. 2014). Ban, Jacob, and
Gamba (2015) improved the accuracy of global urban mapping at the 30 m resolution
with spaceborne synthetic aperture radar (SAR) data by using a newly developed
robust processing chain.

Urban vertical growth is the other significant aspect of urban growth, which repre-
sents urban compactness, population growth (Fan 1999), and residential lifestyle (Lin
et al. 2014). RS techniques have been applied in detecting urban vertical growth as well,
and they can be divided into two groups in terms of sensors: active sensors (e.g. SAR
imagery, lidar data) and passive sensors (i.e. general optical imagery) (Zeng et al. 2014).
For example, an automatic method consisting of an iterative simulator and a matching
function was proposed to estimate building heights with single very high spatial
resolution (VHR) SAR images (Brunner et al. 2010). Rottensteiner and Briese (2002)
employed a robust interpolation method to separate points from lidar data on buildings
so that the three-dimensional (3D) model of buildings could be automatically generated.
In the meantime, estimating building heights and then reconstructing 3D models of
buildings from shadow information with VHR imagery has been commonly studied
(Huertas and Nevatia 1988; Irvin and McKeown 1989; Lin, Huertas, and Nevatia 1994;
Lin and Nevatia 1998). Shettigara and Sumerling (1998) used sun-sensor-shadow geo-
metry to derive building heights from sun shadows in monocular SPOT imagery. Izadi
and Saeedi (2012) used lines and their intersections from detected polygonal shape
rooftops to detect buildings and then estimated their heights by shadows on QuickBird
satellite images. Shao, Taff, and Walsh (2011) improved shadow/water detection using
the spatial information of image objects from IKONOS images and then used the
identified shadow information to estimate corresponding building heights. Wang, Yu,
and Ling (2014) derived building heights from a Chinese No. 3 Resource Satellite VHR
image using a strategy of combining morphological building/shadow indexes and
object-based information extraction methods. Therefore, shadow information derived
from optical imagery helps in estimating building heights. However, studies that take
advantage of shadow information in measuring urban vertical growth using medium
resolution optical satellite images are rarely seen. One reason may be that the areas of
building shadows are very small, often less than a single pixel, in medium resolution
optical satellite images (Shao, Taff, and Walsh 2011). But for some large size shadows
casted by high-rise buildings, this information is still worthy of utilization for historical
urban growth research, because medium resolution optical satellite images, such as
Landsat images, have a longer time period of records (Small 2005) and their single-
image coverage is suitable for studying urban growth in the entire area of a large city. In
addition, taking into account multisource data is desirable in shadow detection (Zhou
et al. 2009). The spectral similarity-enhanced Markov chain random field cosimulation
(SS-coMCRF) model for land-cover postclassification (Zhang et al. 2017) provides a
promising way to improve classification quality with help of expert-interpreted sample
data from multi-sources while avoiding the relatively strong smoothing effect of the
Markov chain random field cosimulation (coMCRF) model in postclassification (Li et al.
2015). We expect that this method may further help identify shadows from waterbodies
preclassified from Landsat images.

Guangzhou is the third largest city in China and the largest city in southern China,
and it had 16.67 million dwellers in 2015 (Wan 2015). Guangzhou has been undergoing
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extraordinary urbanization in the past decades, which modified the land surface drama-
tically with a great amount of buildings being constructed (Fan, Weng, and Wang 2007).
However, so far little effort has been spent in analysing the footprint of urbanization in
Guangzhou over time both horizontally and vertically. One reason may be that in
developing countries, data about urban growth are usually not available from regula-
tory, governmental or commercial sources (Miller and Small 2003). The second reason
may be that effective methods for detecting urban vertical growth in a large city area
with medium resolution satellite images have been lacking. In this study, Landsat images
in 1993, 2001, and 2013 were used. Because Landsat archive has been open totally since
June 2007, it is possible to take advantage of those data for urban growth research. First
of all, a widely-used pre-classifier (e.g. Support Vector Machine (SVM)) was used to
classify selected Landsat images. The SS-coMCRF model was then applied to postclassify
the preclassified images and differentiate shadows out of waterbodies by incorporating
expert-interpreted data and correcting misclassified building shadow pixels. A morpho-
logical operator based on spatial logic reasoning was developed to estimate mid-rise or
taller buildings (MTBs) from identified shadows. The objectives of this study are (1) to
develop an integrative framework for estimating horizontal and vertical urban growth
with medium resolution RS imagery and multisource data, and (2) to explore the
temporal horizontal and vertical expansions of Guangzhou from 1993 to 2013 and
their relationships with major socioeconomic factors (i.e. population density, real gross
domestic product (GDP), and fixed investment (i.e. investment in fixed assets such as
land, buildings)). Although the method is not perfect in detecting all MTBs and the case
study is also exploratory, the proposed framework and case study can be helpful in
quantitatively exploring the horizontal and vertical urban growth of a city, especially a
large city, and their causes.

2. Study area and data

2.1. Study area

Guangzhou is the capital city of the Guangdong province in China. At present, there are
totally eleven districts under the administration of Guangzhou municipality. The study
area is the main city area of Guangzhou (Figure 1), which includes Baiyun, Tianhe, Yuexiu,
Huangpu, Liwan, and Haizhu, totally six districts. The metropolitan area of Guangzhou has
five suburban districts, that is, Panyu, Huadu, Nansha, Zengcheng, and Conghua, which
are not included in the study area. In this article, when we mention ‘Guangzhou’, we are
referring only the study area. The study area covers 1471.566 km2, accounting for 15.69%
of the whole metropolitan area. Guangzhou is part of the Pearl River Delta; therefore, the
study area is mainly on a flat plain, except for a mountainous area (i.e. the Baiyun
Mountain) located in the central to northeast part of the study area (see the upper-right
dark area in Figure 1(c)). Guangzhou is located in south China, belonging to the sub-
tropical region, with a humid climate. The annual average temperature in Guangzhou is
approximately 22–23°C. There are 7.83 million people living in the study area in 2013,
which accounts for 60.57% of the total population of the whole city.
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2.2. Image data

In this study, three Landsat scenes were downloaded from US Geological Survey (USGS).
These images were acquired by Landsat 5 TM sensor, Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) sensor, and Landsat 8 Operational Land Imager (OLI) sensor, on 5
October 1993 with 49.6° for sun elevation angle and 129.7° for sun azimuth angle, 20
November 2001 with 41.8° for sun elevation angle and 150.8° for sun azimuth angle, and
29 November 2013 with 41.4° for sun elevation angle and 154.8° for sun azimuth angle
(Figure 1(c)), respectively. Landsat products from USGS were released under the Landsat
Level 1 standard, as they were processed using the Level 1 Product Generation System
(LPGS) (USGS 2014). In order to utilize smaller sun angles to cause larger shadows with
low cloud cover, Landsat scenes from October to February were considered. Selecting
appropriate bands for use is important to classification in terms of earth observation. In
this study, six widely-used common spectral bands with a spatial resolution of 30 m for
Landsat 5 (band 1–5 and 7), Landsat 7 (band 1–5 and 7), and Landsat 8 images (band

Figure 1. The study area – the main city area of Guangzhou: (a) location of the study area in
Guangdong Province, China; (b) districts included within the study area – Baiyun, Tianhe, Yuexiu,
Huangpu, Liwan, and Haizhu; and (c) the Landsat 8 OLI true colour image for the study area. The
image was acquired on 29 November 2013, with a spatial resolution of 30 m.

3708 W. ZHANG ET AL.



2–7), were extracted and stacked for preclassification. These bands are blue, green, red,
near-infrared (NIR), short-wave infrared 1 (SWIR-1), and short-wave infrared 2 (SWIR-2).
Guangzhou has a relatively simple landscape because of the delta terrain. Therefore, four
major land-use/land-cover classes were mapped, namely, built-up area, vegetation area,
waterbody, and bare land for final classifications.

2.3. Expert interpreted data

For the SS-coMCRF model, preclassification data, expert interpreted data and the
original image for preclassification are three needed input data sets for performing
a postclassification (Zhang et al. 2017). SVM was used to produce each preclassified
land-cover map with five land-use/land-cover classes, including built-up area, vegeta-
tion area, waterbody, bare land, and shadow. The expert-interpreted data were
discerned for the study area by expert judgment based on professional insight and
integrative information from multiple sources, including high-resolution aerial images
and other reliable and current reference data, such as Baidu Maps, Google Maps, and
Google Earth historical images. In expert-interpreted sample data, shadows were not
categorized as a specific class because they are not real ground features. In preclas-
sifications, while treated as a specific class, shadows are often misclassified into the
waterbody class due to spectral confusion. However, in reality shadows are caused by
high-rising terrain or man-made structures; thus they should not belong to the
waterbody class.

For the study area, 3167 sample points for 1993 landscape were interpreted mainly
from the original image based on expert judgement due to limited reliable data sources,
and 2882 sample points for the 2001 landscape and 3042 sample points for the 2013
landscape (Table 1) were expert-interpreted from multiple sources. All of the sample
points were used as hard conditioning data and also for estimation of transiogram
models and cross-field transition probabilities used in cosimulations (Li et al. 2015).
Cosimulations were consequently conducted on each expert-interpreted sample data
set with corresponding transiogram models, cross-field transition probability matrix,
preclassification data and the original image for preclassification. The corresponding
original optical spectral image for preclassification is needed by the SS-coMCRF model
for providing pixel spectral data for spectral similarity measure computation (Zhang
et al. 2017). Specific quantities of expert-interpreted sample data, validation data, and
training data of each land-cover class are given in Table 1.

The validation data are also expert-interpreted data from multiple sources, but they
were used only for validating the preclassification and postclassification results. Training
data are different, because they were selected only from the corresponding original RS
image for preclassification, and were only used for the SVM preclassification of land-
cover classes from the original image for the study area. In order to maximize the
classification of waterbodies and shadows out of other land-cover classes, shadows
were treated as a land-cover class in preclassification. The shadow class was merged
into the waterbody class after preclassification, because they cannot be differentiated
effectively from each other due to spectral confusion (Shao, Taff, and Walsh 2011).
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2.4. Socioeconomic data

In this study, the spatial and temporal relationships between urban horizontal and vertical
expansions and the change of socioeconomic variables were also explored. In Guangzhou,
the minimum geographic unit for socioeconomic data is district (i.e. equivalent to county).
Because the socioeconomic data for each year are released by the Yearbook in the next
year, the total population, GDP, fixed investment, and jurisdictional area for each district for
1993 are from Guangzhou Statistical Yearbook 1994 (Guangzhou Statistical Bureau 1994),
which was published by China Statistical Press. Data for each district for 2001 and 2013 are
from Guangzhou Statistical Yearbook 2002 (Guangzhou Statistical Bureau 2002) and
Guangzhou Statistical Yearbook 2014 (Guangzhou Statistical Bureau 2014), respectively,
both published over the website of the Guangzhou Statistical Bureau.

GDP values from Guangzhou Statistical Yearbooks are nominal GDPs, which are not
adjusted for inflation. However, nominal GDP values from different time periods can
differ due to changes in quantities of goods and services and changes in general price
levels. As a result, taking inflation into account is necessary when comparing GDP values
over time. To eliminate the influence of inflation, GDP deflators from 1978 to 2014 were
calculated based on national GDP index and nominal GDP (National Bureau of Statistics
of China 2014). Final real GDP values for the six districts for 1993, 2001, and 2013 were
1978 inflation-adjusted values.

Frequent changes in jurisdictional district areas occurred in Guangzhou during the
studied period from 1993 to 2013. For example, before April 2005, Dongshan district was
an independent district out of current Yuexiu district, and Fangcun district was an
independent district out of current Liwan district. To solve this problem, data published
before 2005 for Dongshan district and Yuexiu district and for Fangcun district and Liwan
district were merged as data for Yuexiu district and Liwan district, respectively. For the
GDP value of Yuexiu district in 1993, there is no record from any official document. So,
the GDP value of Yuexiu district in 1993 is estimated as the mean value of the GDPs of
Yuexiu district in 1992 and 1994.

Luogang district was a district in Guangzhou that was established in 2005 and
cancelled in 2014. Therefore, it happened as a jurisdictional district in Guangzhou
Statistical Yearbook 2014, but did not exist in previous data. Luogang district comprised
part of Baiyun district, part of Tianhe district, and part of Huangpu district. As a result,
there is currently not an efficient way to split the Luogang district. In order to normalize
socioeconomic data over the study period, relative values of socioeconomic variables
were used instead of absolute values. Because data for socioeconomic variables (i.e. total
population, GDP, fixed investment) collected from Yearbooks have corresponding area
values, density values of socioeconomic variables were used. Consequently, Luogang
district was not considered as a separate jurisdictional district and ignored in this study.

3. Methods

3.1. Integrative framework

The integrative framework proposed in this article is based on two premises and an
assumption. The first premise is that postclassified land-cover maps are accurate
enough. In order to satisfy this premise, the SS-coMCRF model is used to postprocess
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land-cover maps generated by a pre-classifier because the SS-coMCRF model can
effectively improve land-cover classification by incorporating expert-interpreted data
and similarity measures and consequently removing most noise and misclassified pixels
(Zhang et al. 2017). The second premise is that shadow pixels can be classified effec-
tively as waterbodies or shadows from RS imagery; otherwise, MTBs would be strongly
underestimated. When differentiating shadows out of waterbodies, it is assumed that
the preclassified waterbodies (including shadows merged into the waterbody class) that
overlap postclassified built-up areas are supposed to be shadows. Based on this assump-
tion, shadows caused by terrain will not be included for estimating MTBs, because most
of these kinds of instances occur in mountainous areas. During preclassification, most of
shadows are misclassified as waterbodies because of spectral confusion between sha-
dow and water (see Table 2 for the relatively low spectral separability values between
the shadow class and the waterbody class in training data). Then these two classes in a
preclassification map are merged as one waterbody class (Shao, Taff, and Walsh 2011) in
order to minimize the amount of single, disperse misclassified waterbodies and shadows
for further shadow estimation. This kind of misclassifications is expected to occur more
often in the city central area where there are more MTBs. After postprocessing with SS-
coMCRF, most of those misclassifications are corrected in the postclassification map. By
overlap analysis, shadows, which are mostly misclassified in the preclassification step,
are distinguished from the waterbody class.

The proposed integrative framework includes five steps (Figure 2): (1) a pre-
classifier (here SVM is chosen due to its popularity) is used to classify a Landsat
image into a land-cover map with five land-cover classes (built-up area, vegetation
area, waterbody, bare land, and shadow). In order to sufficiently utilize the spectral
information (i.e. to obtain a land-cover map with relatively high accuracy from a
selected image purely based on spectral data), training samples of each land-cover
class need to be obtained by visual interpretation from multispectral bands of the
Landsat image. (2) The classified shadows and waterbodies in the preclassified image
are merged into one waterbody class, and then postclassification by the SS-coMCRF
model is conducted on the preclassified image using expert interpreted sample data

Table 2. Spectral separability of training data for three Landsat images on
different dates (i.e. 1993, 2001, and 2013).

Year Class

C2 C3 C4 C5

Spectral separability

1993 C1 1.9996 1.9900 1.7959 1.9060
C2 2.0000 1.9999 1.9998
C3 2.0000 1.7780
C4 1.9997

2001 C1 1.9987 1.9819 1.9392 1.9044
C2 1.9977 1.9923 1.9953
C3 2.0000 1.5506
C4 2.0000

2013 C1 1.9997 1.9940 1.8884 1.9874
C2 1.9997 1.9917 1.9998
C3 2.0000 1.8637
C4 2.0000

C1: built-up area; C2: vegetation area; C3: waterbody; C4: bare land; C5: shadow.
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without the shadow class. In the postclassified image, most noise and misclassified
built-up area pixels are removed. (3) Shadows are differentiated by overlap analysis
of the preclassified image and the postclassified image. (4) A morphological operator
based on spatial logic reasoning is used to estimate MTBs from identified shadows.
(5) The obtained MTB map and built-up area map are finally used for grid cell
analysis to represent the changes of MTBs and built-up areas within each grid cell
area.

In order to select proper training samples for preclassifications, Jeffries–Matusita
distance analysis was conducted. Values of Jeffries–Matusita distance analysis greater

Figure 2. A flow chart of the integrative framework for estimating horizontal and vertical urban
growth using medium resolution remotely sensed imagery.
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than 1.9 indicate that the corresponding land-cover pairs have relatively good
separability (Richards and Jia 1999). In this study, the Jeffries–Matusita distance
values of the finally selected training data for the three selected Landsat images
ranged from 1.55 to 1.99 (Table 2). As expected, the lowest values occur between
waterbody and shadow classes due to their spectral confusion. Spectral separability
values are quite ideal for other class pairs, except the values between built-up area
and bare land for training samples for the 1993 and 2013 images due to spectral
confusion.

3.2. SS-coMCRF model

The Bayesian coMCRF model has proven to be an effective method for land-cover
postclassification (Li et al. 2015; Zhang, Li, and Zhang 2016). The Bayesian Markov
chain random field (MCRF) theory was initially proposed by Li (2007a) as the supporting
theory for Markov chain geostatistics and further described with emphasis of the
sequential Bayesian updating view in Li et al. (2013) and Li et al. (2015). Spatial statistical
models have the capability to incorporate spatial correlation information into classifica-
tion. However, due to the impact of spatial data within a usually circular neighbourhood,
spatial statistical models tend to have the smoothing effect that usually ignores or
removes the geometric features of classes (e.g. narrow linear features, regular linear/
curvilinear boundaries) while eliminating the noise and some details in the classified
images. The recent presented SS-coMCRF model modified the coMCRF model for land-
cover postclassification by adding a spectral similarity-based constraining factor and it
has proven to be capable of reducing the geometric feature loss caused by the
smoothing effect (Zhang et al. 2017).

The spectral similarity-based constraining factor is based on the following under-
standing: At a local scale, the spectral reflectance values (i.e. digital numbers) of two
pixels tend to be similar if they belong to the same class in real world, but tend to be
very different if they belong to different classes in real world. Two mutually comple-
mentary similarity measures, the Jaccard index and the spectral correlation measure
(SCM), were used as spectral similarity measures to construct the spectral similarity-
based constraining factor used in the SS-coMCRF model. When a transition probability
for a neighbourhood involves two different classes (i.e. cross transition), the constraining
factor is assigned to 1.0; but when a transition probability involves the same class (i.e.
autotransition), the constraining factor is applied to update the transition probability in
estimating the local probability distribution. By this way, the contribution of the spec-
trally similar nearest data within a neighbourhood is enhanced and the contribution of
the spectrally dissimilar nearest data is reduced. The spectral similarity-based constrain-
ing factor is expressed as

Sil ik ¼
1:0; il�ik

ρil ik xl; ykð Þ � Jil ik xl; ykð Þ; il ¼ ik
;

8<
: (1)

where il is the land-cover class of pixel l; ρil ik and Jil ikare the SCM and Jaccard index of the
spectral vectors (i.e. spectral values of different bands) xl and yk of pixel l and pixel k,
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respectively. The spectral similarity-enhanced coMCRF (i.e. SS-coMCRF) model (Zhang
et al. 2017) is given as

p i0 u0ð Þji1 u1ð Þ; . . . ; i4 u4ð Þ; r0 u0ð Þ; Spectrum½ � ¼
qi0r0pi1 i0 h10ð ÞSi1 i0

Q4
g¼2

pi0 ig h0g
� �

Si0 ig

Pn
f0¼1

½qf0r0pi1f0 h10ð ÞSi1f0
Q4
g¼2

pf0 ig h0g
� �

Sf0 ig �
;

(2)

where u represents the location vector of a pixel, i0refers to the land-cover class of the
unobserved pixel at location u0;i1 to i4 are the states of the four nearest neighbours
around the unobserved location u0 within a quadrantal neighbourhood; the left hand
side of the equation is the posterior probability of state or class i0; pi0 ig h0g

� �
is a specific

transition probability over the separation distance h0g between locations u0 and ug,
which can be fetched from a transiogram model Pi0 ig hð Þ (Li 2007b); qi0r0 represents the

cross-field transition probability from class i0 at the location u0 in the random field being
simulated to class r0 at the co-location in the covariate field of the preclassified image (Li
et al. 2015); and Spectrum here means the spectral data of the original remotely sensed
image for preclassification, which are used to calculate the spectral similarity-based
constraining factor. The above SS-coMCRF model is built on a simplified MCRF model
based on the conditional independence assumption of nearest data within a neighbour-
hood, and a quadrantal neighbourhood (i.e. seek one nearest datum from each quadrant
sectoring the circular search area if there are nearest data in the quadrant) is used in a
random-path sequential simulation algorithm for conducting stochastic simulation (Li
and Zhang 2007). See Zhang et al. (2017) for a detailed description of the SS-coMCRF
model.

3.3. Postprocessing and shadow detection

SVM classifier was used to preclassify the Landsat images to obtain preclassified image
datasets. After the shadow class and the waterbody class were merged as one water-
body class, preclassified images were used in the SS-coMCRF model for postclassification
operations. For each postclassification case, 100 simulated realizations were generated,
and finally an optimal classification map was further obtained according to the max-
imum probabilities estimated from the set of simulated realizations. The accuracy of the
optimal classification map was calculated using the expert-interpreted validation data in
order to make sure it was accurate enough for shadow detection.

In shadow detection, it is assumed that waterbodies from preclassification happening
in built-up areas from postclassification are supposed to be shadows, as we mentioned
before. During preclassification, most of shadows are misclassified as waterbodies
because of spectral confusion between shadow and waterbody. This kind of misclassi-
fications is expected to occur widely in the central area of a large city where more MTBs
exist. After postprocessing with SS-coMCRF, a majority of those misclassifications are
corrected. By overlap analysis (Figures 3(a–f)), shadows misclassified in the preclassifica-
tion step are distinguished from waterbodies (Figure 3(e)). First of all, waterbodies in
preclassification are selected as water objects (i.e. one pixel or multiple neighbouring
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pixels) (Figure 3(b)) out of the preclassification map (Figure 3(a)). Each waterbody object
is then reclassified as a shadow object (Figure 3(e)) if its corresponding location in the
postclassification map belongs to a built-up area (Figure 3(d)). Finally, the detected
shadow objects are mapped (Figure 3(f)). Those misclassified shadows and waterbodies
outside urban areas won’t have a chance to be reclassified as shadows of buildings.

3.4. Mid-rise or taller buildings estimation

Shadows can be detected with help of combining SVM preclassification, SS-coMCRF post-
processing, and overlap analysis, as described above. According to the spatial relationships
among the sun, the satellite and the buildings, a morphological operator based on spatial
logic reasoning was developed to estimate high-rise building areas from detected shadows.
The basic idea of this morphological operator is to build the spatial logic relationship
between a shadow and its corresponding MTB (i.e. neighbouring pixels of a detected
shadow at the sun side are classified as a MTB). A pixel (or a group of pixels) is considered
as a MTB if a shadow occurs as its neighbour in the dark side of the building. To be specific,
we first confirm the sun azimuth angle and the sun elevation for the Landsat image used.
Then we locate the neighbouring pixels at the sun side of a shadow and label them as a

Figure 3. The process of detecting shadows by overlap analysis with Support Vector Machine (SVM)
preclassification and spectral similarity-enhanced Markov chain random field cosimulation (SS-
coMCRF) postclassification. (a) the preclassification map after the shadow class and waterbody
class are merged as one waterbody class; (b) waterbodies from the preclassification map, with
other land-cover classes being represented as background; (c) the postclassification map; (d) built-up
areas from the postclassification map, with other land-cover classes being represented as back-
ground; (e) after overlap analysis, shadows are detected and outputted; (f) detected shadows are
shown in the postclassification map.
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high-rise building. For example, for the Landsat image of 2013, only neighbouring pixels at
the south and southeast sides of shadow pixels (Figures 4(a–h)) are recorded due to the sun
azimuth angle (154.8°). The number of the pixels of a shadow object could be one to more
than one (i.e. multiple connected shadow pixels). MTBs are estimated regardless of the
shapes of shadow objects. When multiple high buildings have their shadows overlapped,
only the high building at the sun side is identified. This may have some impact on the
estimation of MTBs in terms of building-occupied areas.

MTBs can be estimated automatically by the following steps: (1) labelling of shadows:
all identified shadows are labelled orderly; (2) estimation of high-rise buildings from
labelled shadows: According to the locations of pixels of shadow objects, neighbouring
pixels at the south and southeast sides of shadow pixels are recorded as MTBs; (3)
assignment of high-rise building areas: all estimated MTBs are assigned to the post-
classification map produced by SS-coMCRF model.

3.5. Grid cell analysis

Combining RS data and socioeconomic statistical data to perform grid cell analysis is a
promising way for analysing urban growth patterns (Bagan and Yamagata 2012, 2014). Grid
cell analysis at the resolution of 990 m (i.e. the length of 33 Landsat image pixels) was
conducted to explore the horizontal change and vertical change of urban built-up areas.
First of all, two empty raster data layers (cell size 990 m × 990 m) are created. One is for
horizontal urban growth analysis, and the other is for vertical urban growth analysis.
Second, by overlaying operation, the number of 30 m × 30 m built-up area pixels in
each grid cell is counted from the final postprocessed map and the proportion of built-up
area is calculated and assigned to the grid cell of the empty raster data layer; and similarly,
the number of 30 m × 30 m MTB pixels in each grid cell is counted and the proportion of

Figure 4. The process of estimating mid-rise or taller buildings (MTBs) based on the spatial logic
relationship between a shadow and its corresponding MTB (i.e. neighbouring pixels at the proper
side of detected shadows are classified as MTBs). Given that the sun azimuth angle of the image is
154.8°, neighbouring pixels (a, c, e, g) at the south and southeast sides of a group of shadow pixels
are recorded as MTBs (b, d, f, h). Note that the estimation ignores shadow overlap of clustered high
buildings.
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MTB area is calculated and assigned to the grid cell of the other empty raster data layer. By
overlap subtraction between results for different years, horizontal spatial-temporal changes
in built-up area and vertical changes in built-up area can be calculated and visualized.

4. Results and analyses

4.1. Classification accuracy

Figures 5(a–c) and 6(a–c) show the preclassification maps by the SVM classifier and the
postclassification maps by the SS-coMCRF model, respectively. The overall accuracies
(OAs) and kappa coefficients (KCs) of the preclassifications (after the waterbody class and
the shadow class were merged as one waterbody class) and those of the corresponding
postclassifications were calculated using the corresponding expert-interpreted valida-
tion datasets, as given in Table 3. The postclassifications by SS-coMCRF all made
improvement in OA and KC over the corresponding preclassifications by SVM. The OA
improvements range from 0% to 5%, with corresponding KC improvements ranging

Figure 5. Land-cover preclassification maps of the main city area of Guangzhou (with the shadow
class): (a) in 1993, (b) in 2001, and (c) in 2013.
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from 0.003 to 0.084. Among all of the postclassifications based on datasets of different
years, the postclassification for the 2013 image obtains the highest OA improvement
(5%). Although the overall accuracy improvements made by postclassifications are not
much due to the high accuracies of preclassifications in this study, the land-cover

Figure 6. Land-cover postclassification maps of the main city area of Guangzhou: (a) in 1993, (b) in
2001, and (c) in 2013.

Table 3. Accuracy assessment of land-cover preclassifications by Support Vector Machine (SVM) and
corresponding postclassifications by spectral similarity-enhanced Markov chain random field cosi-
mulation (SS-coMCRF) for Guangzhou on three different dates (i.e. 1993, 2001, and 2013).

Year Classification Overall accuracy (%) Kappa coefficient

Producer’s accuracy (%) User’s accuracy (%)

C1 C2 C3 C4 C1 C2 C3 C4

1993 Preclassification 94.3 0.907 94 100 94 33 98 94 96 47
Postclassification 94.3 0.910 92 97 98 86 99 98 98 44

2001 Preclassification 92.9 0.882 91 96 91 77 97 100 60 59
Postclassification 94.8 0.914 91 100 97 100 100 100 94 37

2013 Preclassification 91.7 0.857 90 96 94 63 98 99 55 39
Postclassification 96.7 0.941 95 100 100 88 100 97 78 88

C1: built-up area; C2: vegetation area; C3: waterbody; C4: bare land.
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patterns in postclassification maps are much more reasonable (e.g. noise is removed,
patterns become less fragmented, and most of misclassifications are corrected) than
those in preclassification maps (Zhang, Li, and Zhang 2016).

For specific land-cover classes, the SS-coMCRF postclassification operation apparently
increased the producer accuracies and user accuracies of the waterbody class for all three
years, while, to some extent, decreasing the producer accuracies of the built-up area class
and the vegetation class for 1993. In addition, SS-coMCRF largely increased the producer
accuracies of the minor class – bare land for all three dates. As a very minor class, the
classification accuracies of bare land are sensitive. However, because the spectral separ-
ability of bare land from waterbody and shadow has high values, the classification
accuracies of this minor class have little impact on the identification of MTBs. In general,
although some classes obtained lower producer accuracies or user accuracies in postclas-
sifications than they did in the preclassifications, the negative effects are less obvious in
comparison with the positive effects achieved by postclassifications.

4.2. Estimation accuracy of MTBs

Due to the lack of high spatial resolution imagery of the study area, accuracy assessment of
MTBs was only performed for the 2013 classification. 549 among the 5454 estimated MTB
patches were selected randomly for validation. Visual validation of selected MTBs was con-
ducted carefully by comparing them with corresponding buildings in high spatial resolution
images (see Figure 7) from ESRI world imagery, Bing Maps, Baidu Maps, Google Maps, and
Google earth history imagery, because none of the high resolution images mentioned above
can provide the best viewing angle without cloud coverage for the whole study area at the
time. The ranges of sun elevation angles and sun azimuth angles for all three Landsat image
scenes used are from 41° to 49° and from 129° to 150°, respectively. Because medium-
resolution Landsat images (spatial resolution of 30 m) were used, shadows that are not
sufficiently long (assuming shadows are sufficiently wide) may not be captured based on
the following equation, which represents the sun–building–shadow relationships:

L ¼ H= tan θð Þ; (3)

where H is the height of a building, L is the length of the building’s shadow, and θ is the sun
elevation angle. Building story is commonly 2.8 m high in China (Ministry of housing and
urban rural development of China 2012). Then, for the image acquired in 1993, whose sun
elevation angle is 49.6°, shadows of buildings with a height lower than 12-story (i.e. 33.6 m
high for buildings = 28.6m long for shadows)may not be sensed technically, unless they are
longer than 15 m and completely fall into one single pixel; and for the images acquired in
2001 and 2013, whose sun elevation angles are 41.8° and 41.4°, respectively, shadows of
buildings with a height lower than 9 story (i.e. 25.2 m high for buildings = 28.5 m long for
shadows) may not be sensed, unless they are longer than 15 m and completely fall into one
single pixel. According to the general rules for civil building design (Ministry of Construction
of China 2005), 7 story to 9 story buildings are considered as mid-rise buildings, and 10-story
or taller buildings are considered as high-rise buildings. Therefore, we can safely assume
that most high-rise buildings and part of mid-rise buildings in Guangzhou were sensed by
the selected 2001 and 2013 RS images, and most high-rise buildings were sensed by the
selected 1993 RS image.
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If we consider only high-rise buildings, the highest identification accuracy is 80.2% in
Tianhe district, followed by 72.2% in Haizhu district. For Yuexiu district and Baiyun
district, the accuracies are 69.3% and 65.2%, respectively. Huangpu and Liwan districts
get the lowest accuracies of identification, 46.4% and 41.8%, respectively. The overall
identification accuracy is 65.2% for the study area (Table 4). This means that 34.8% of
captured shadows are not from high-rise buildings and some of them may be false
shadows. However, if mid-rise buildings are also taken into account, the identification
accuracies for individual districts, except for Baiyun district, increase significantly. For
Yuexiu district, the proposed method is even able to make detection with up to 97.3%
identification accuracy. The corresponding overall accuracy is 78.1% (Table 4). This
means that among the 549 MTB patches randomly selected for validation of the 2013
image detection, 65.2% are high-rise buildings, 12.9% are mid-rise buildings, and 21.9%
are false MTBs. Those false MTBs are mostly distributed in the less developed urban
areas outside the city’s central urban area. For example, paddy fields (i.e. watered

Figure 7. Examples of MTBs and the corresponding identified MTBs by shadows. (a), (d), (g), (j), (m),
and (p): identified MTBs by shadows; (b), (e), (h), (k), (n), and (q): corresponding portions of the
Landsat image in 2013; (c), (f), (i), (l), (o), and (r): corresponding portions of enlarged aerial images
from ArcGIS Imagery basemap as visual references; and (s) their locations in the study area.
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farmlands) and some farmlands covered by black shade nets in rural–urban fringes have
very similar spectral values to shadows. In general, the proposed method is able to
capture most of high-rise urban buildings and part of mid-rise urban buildings by their
shadows, and the identification accuracy is acceptable. It should be pointed out that
here the identification accuracy of MTBs is the accuracy of the captured shadows in
built-up areas to be MTBs, which are mostly high-rise buildings and partly mid-rise
buildings. Some very narrow high-rise buildings and many mid-rise buildings may not
be identified because their small-size shadows cannot be effectively reflected in the
Landsat image or cannot be captured in preclassification.

4.3. Horizontal and vertical urban growth

The proposed framework proved to be capable of detecting horizontal and vertical urban
growth from Landsat images. For land-cover/land-use classification, the overall accuracies
range from 94.3% to 96.7%. For identifying MTBs from captured shadows within built-up
areas, the overall identification accuracy is 78.1%, but the specific accuracies are around 90%
for the city’s central urban area – Tianhe, Yuexiu, and Haizhu districts (Table 4), though we
only examined the 2013 results due to the lack of high spatial resolution images for earlier
years (i.e. 1993 and 2001). Therefore, the estimation of horizontal and vertical urban growth
of Guangzhou over time using the proposed integrative framework for land-cover mapping
and MTB estimation is expected to be valuable.

During the period of 1993–2013, the total built-up area in Guangzhou doubled
(Table 5), with most area increase occurring in the southern and western regions of
Guangzhou (Figures 8(a,b)). There are two horizontal urban expansion directions from
the city centre – Yuexiu district: one is towards north and one is towards east (Figures 8

Table 4. Accuracy assessment for identified mid-rise or taller buildings (MTBs) in Guangzhou in 2013.

Year Building Accuracy

Jurisdictional district

Baiyun Tianhe Yuexiu Huangpu Liwan Haizhu Total

2013 Considering
only high-rise
buildings

Number of correctly
classified samples

75 101 52 32 28 70 358

Number of total samples 115 126 75 69 67 97 549
Accuracy (%) 65.2 80.2 69.3 46.4 41.8 72.2 65.2

2013 Considering MTBs Number of correctly
classified samples

76 114 73 44 35 87 429

Number of total samples 115 126 75 69 67 97 549
Accuracy (%) 66.1 90.5 97.3 63.8 52.2 89.7 78.1

Table 5. Areas of estimated built-up areas and estimated MTBs for Guangzhou and its six districts for
three different years (1993, 2001, and 2013).

Class Year

Area in each jurisdictional district (km2) Total area in
Guangzhou (km2)

Total change from
1993 (km2)Baiyun Tianhe Yuexiu Huangpu Liwan Haizhu

Built-up
areas

1993 69.54 35.18 23.61 28.60 30.98 37.42 225.33
2001 99.72 46.20 22.84 37.71 37.51 45.30 289.28 +63.95
2013 217.30 70.24 22.90 84.38 46.81 55.04 496.68 +207.39

MTBs 1993 0.52 0.33 0.47 0.35 0.70 0.50 2.87
2001 1.32 1.29 1.72 0.99 1.64 1.40 8.36 +5.49
2013 2.66 2.51 1.65 1.36 1.59 1.98 11.74 +3.38
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(a,b), and also see Figures 6(a–c)). However, there is much more area increase during
2001–2013 (Figure 8(b)) than during 1993–2001 (Figure 8(a)), especially in Baiyun,
Tianhe, and Huangpu districts (Table 5).

In terms of vertical urban growth, an increase of 3.38 km2 took place during
2001–2013 (Figure 8(d)) while an increase of 5.49 km2 occurred during 1993–2001
(Figure 8(c)) (Table 5). Geographically, the areas with vertical urban growth were con-
centrated in and around Yuexiu district (Figures 8(c,d)). During 1993–2001, vertical urban
growth mainly occurred within the central area of the city, which means most high
buildings were built in the city central area to reform the city centre during that
economic development period. During 2001–2013, urban vertical growth mainly
occurred around the old centre of the city, which means that the previous city central
area had already been well built and reformed during earlier periods, and the highly
developed urban area of the city was expanding towards surrounding areas.

In order to better understand the urban growth in the central area of Guangzhou,
information for Yuexiu district was provided in Figures 9(a–f). Yuexiu had a slight

Figure 8. Area increase of built-up areas ((a) from 1993 to 2001, (b) from 2001 to 2013) and area
increase of estimated MTBs ((c) from 1993 to 2001, (d) from 2001 to 2013) in Guangzhou. The grid
cell size for grid cell analysis in (a), (b), (c), and (d) is 990 m × 990 m.
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change in built-up area during 1993–2013. Obviously, as the commercial, political and
cultural centre of Guangzhou, this district had already been well urbanized before
1993. Besides Guangdong provincial government and Guangzhou city government,
almost all of state agencies and related state-owned companies are located in Yuexiu
district. This can explain why Yuexiu district as a small district is the centre of
Guangzhou. Except for several green spaces (three parks and the green area around
Mr Sun Yat-sen’s Memorial Hall), the only left non-urbanized area before 1993 was an
island in Huangpu River, which had been mostly urbanized during 2001–2013 (Figure 9
(c)). In terms of the vertical growth of Yuexiu district, the number of MTBs increased
largely across the whole district from 1993 to 2001, but changed little during
2001–2013 (see Figures 9(a–f)).

4.4. Relationships between urban growth and socioeconomic variables

Over the entire study period (1993–2013), the overall population density of the study
area increased to 14,950 per km2 from 10,915 per km2, and most of the increase
happened during 2001–2013. With the rising population density, overall real GDP
density increased quickly over the same period, from 10.64 million yuan per km2 in
1993 to 149.15 million yuan per km2 in 2001 and finally to 370.34 million yuan per km2

in 2013. Similar increases occurred to overall fixed investment density in the study area,
from 2.99 million yuan per km2 in 1993 to 49.56 million yuan per km2 in 2001 then to
65.10 million yuan per km2 in 2013 (Table 6).

To investigate the relationships between horizontal and vertical urban growth and
socioeconomic variables, we calculated the linear correlation coefficients (r) between

Figure 9. Land-cover maps of Yuexiu district with MTB areas: (a) in 1993, (b) in 2001, and (c) in 2013;
and corresponding Landsat images (R: near-infrared, G: red, B: green) of Yuexiu district: (d) in 1993,
(e) in 2001, and (f) in 2013.
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each of two urban growth indices (i.e. the area of built-up areas and the area of
estimated MTBs) and each of the three socioeconomic variables (i.e. overall population
density, overall real GDP density, and overall fixed investment density) in Guangzhou for
the years of 1993, 2001, and 2013 (Figures 10(a–f)). As Figures 10(a–f) show, the r values
are 0.9968 between the area of built-up areas and population density, 0.9865 between
the area of built-up areas and real GDP, 0.8381 between the area of built-up areas and
fixed investment, 0.8714 between the area of estimated MTBs and population density,
0.9640 between the area of estimated MTBs and real GDP, and 0.9897 between the area
of estimated MTBs and fixed investment. Apparently, there are strong positive associa-
tions between urban growth indices and the three socioeconomic variables. Real GDP
has strong correlations with both horizontal urban growth and vertical urban growth.
However, compared with the correlation between population density and vertical urban
growth, the correlation between population density and horizontal urban growth is
much stronger. Inversely, fixed investment has a much stronger correlation with vertical
urban growth than with horizontal urban growth.

5. Discussion

5.1. Relationship between horizontal and vertical urban expansions

The proposed integrative framework provides another perspective to examine the
urban expansion in Guangzhou over the past two decades by effectively detecting
built-up areas and MTBs. Urban area has expanded horizontally from Yuexiu District
along two main directions, northward and eastward, especially during 2001–2013

Figure 10. Correlation analyses between horizontal and vertical urban growths and three major socio-
economic variables for the data of 1993, 2001, and 2013 in Guangzhou. (a) between area of built-up
areas and population density; (b) between area of built-up areas and real GDP; (c) between area of built-
up areas and fixed investment; (d) between area of estimated MTBs and population density; (e) between
area of estimated MTBs and real GDP; and (f) between area of estimated MTBs and fixed investment. The
three socioeconomic variables all use overall density values in the study area.
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(Figure 8(b)). In contrast, over the period of 1993–2001, vertical urban growth
(Figure 11(b)) mainly happened within Yuexiu district and its surroundings, which
had been already highly urbanized before 1993 (Figure 11(a)), and then during
2001–2013, the areas with vertical urban growth (Figure 11(d)) emerged by following
the horizontal urbanization footprint of 1993–2001 (Figure 11(c)). It is apparent that
vertical urban growth follows horizontal urban growth subsequently. This also means
that high buildings were usually built to replace low buildings, a typical city reform-
ing process occurring in China during last two decades. It should be noted that the
city central area – Yuexiu district and its surroundings had been fully urbanized long
before. Subsequent horizontal urban expansion spread out from this well urbanized
area. This reveals a fact that the urbanization footprint of Guangzhou started from its
political centre.

As shown in Figures 10(a–f), horizontal urban growth has greater correlation with
population density and real GDP than with fixed investment. In contrast, vertical urban
growth is more correlated with fixed investment and real GDP than with population
density. This means that population density and real GDP together are the major force
to drive the urbanization process (i.e. expansion of urban built-up areas), while fixed
investment tend to be spent on high-rise profitable commercial buildings instead of

Figure 11. The patterns of vertical urban growth in Guangzhou during different periods and their
relationships with built-up area and horizontal urban growth. (a) Built-up area in 1993; (b) area
increase of estimated MTBs from 1993 to 2001; (c) area increase of built-up areas from 1993 to 2001;
(d) area increase of estimated MTBs from 2001 to 2013. The grid cell size for grid cell analysis in (a),
(b), and (c) is 990 m × 990 m.
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low-rise residential or commercial buildings at the post-urbanization stage. Our results
indicate that the combination of the area of built-up areas and the area of MTBs is a
better approach to facilitate a thorough understanding of urban growth and local
economic development in comparison to the traditional approach – using only the
area of built-up areas.

5.2. Pros and cons of using Landsat images for detecting MTBs

It is challenging to detect MTBs from shadows using Landsat images. The main reason is
the medium resolution of Landsat images, which causes the shadow areas of most
buildings to be very small (usually smaller than half pixel), difficult to be captured by
spectral difference in classification due to the mixed-pixel issue (Shao, Taff, and Walsh
2011). Only most high-rise buildings and some mid-rise buildings have shadows large
enough in length and width (e.g. one or multiple pixels) to be captured by spectral
difference in classification in our study area. Those mid-rise and high-rise buildings with
shadows that are too small (or narrow) to be captured have to be ignored. In addition,
those shadow-overlapped buildings also cannot be identified. Moreover, the identified
pixels of a specific MTB may not exactly reflect the real size or occupied area of the MTB.
Therefore, the MTBs identified from Landsat images are just a portion of the MTBs (i.e.
most high-rise buildings and a part of mid-rise buildings, of which the shadows are
sufficiently large to be detected) in a city, and their total occupied area can only be
approximately estimated. Nevertheless, as long as the identification method is the same
and the Landsat images used have similar quality, sun elevation angles and sun azimuth
angles, the area of identified MTBs should be representative (or largely proportional to
the real area) to reflect the vertical growth situation of a city at different development
periods.

While the medium resolution of Landsat images seems a disadvantage for identifying
high buildings from their shadows, Landsat images including the medium resolution do
have their unique advantages for urban vertical growth study. Landsat imagery has
covered a long time history since 1972 and the Landsat programme is expected to
function continuously in the future. These make the Landsat imagery very suitable for
detecting urban growth during the last several decades. In addition, Landsat images are
free and widely available now, and their medium resolution means that one Landsat
image may cover a large area (e.g. a whole megacity or the main city area of a megacity
like Guangzhou). These are all advantages of Landsat imagery for urban growth study.
High resolution images, such as QuickBird images and lidar-derived images, are good for
identifying single buildings and their shapes more accurately in a small area. However,
they are not practical for urban vertical growth study in a large area, because they do
not cover a long time history and are usually not free and widely available, and more
restrictively, they are very demanding in the number of images for studying the urban
growth of a large city (maybe hundreds of images or more are needed for covering a
large city). Therefore, Landsat images should be the major data source for studying
urban growth of large cities over a long time period. Consequently, being able to utilize
Landsat images to detect MTBs should be a unique merit of our method. This is
essentially also a novelty of our research. Probably, the approach presented in this
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article is the only existing technology and also the first such kind of studies that use
Landsat images for urban vertical growth study.

5.3. Other imperfections

Even though Landsat images are available, it is still not easy to obtain perfect images for
the same time of different years with exactly the same sun elevation angles and sun
azimuth angles. Thus, the estimated MTB area data from shadows for different years may
not be completely identical in terms of the image parameters. In this study, due to the
relatively larger sun elevation angle of the Landsat image for 1993, the detected MTBs
for 1993 in Guangzhou are limited to high-rise buildings. This means that the MTB area
data for 1993 are relatively underestimated when compared with the data for other two
dates.

We only validated the estimated MTB area data for 2013 with an overall accuracy of
78.1%, due to the lack of high spatial resolution imagery of the study area at earlier
dates (i.e. 1993 and 2001). However, it can be approximately deduced that the overall
accuracy of MTB estimation for 2001 should be around 78% and the value for 1993
should be about 65%, according to the sun elevation angles of corresponding RS images
used in this study (assuming the RS images for the three dates have similar quality).
Nonetheless, the approximate amount or area of high buildings (i.e. MTB area data) and
its change with time we obtained for Guangzhou are still very interesting, and they
reflect the vertical urban growth process of the main city area of Guangzhou quite
reasonably.

The MTB detection needs postclassified land-cover images by the SS-coMCRF model,
which needs to use expert-interpreted sample data for cosimulation. However, the
sample data interpretation process from multiple sources could be time consuming.
This burden may be partially relieved in further efforts by leveraging advanced algo-
rithms or developing a new algorithm for the sample data interpretation process.

There are some other imperfections with the method, which are minor. For example,
if a building is located exactly on the south bank of a waterbody and its shadow falls
into the waterbody, it cannot be identified using our method; if a building is located on
a slope its shadow size may be impacted. These minor imperfections shouldn’t have
large impacts on the results of detected MTBs in most situations. The information we
want to know about the urban vertical growth in a megacity is not the exact height
changes of all buildings or the exact area of high buildings; rather, it is the approximate
area information of high buildings and its overall change in local areas (i.e.
990 m × 990 m grid cells in this study) over a period, which are sufficient to reflect
the urban vertical change situation of a large city within several decades or a longer
time. On this point, our results are quite reasonable and also very reflective to the urban
development footprints of Guangzhou city.

6. Conclusions

An integrative framework for detecting urban horizontal and vertical growth using
medium spatial resolution Landsat imagery is presented with grid cell analysis of
detected urban growth data, and it is demonstrated to be promising by a case study
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of the main city area of Guangzhou. The case study shows that: (1) the final land-cover/
land-use classifications for three years all have an overall accuracy of over 90%; (2) the
overall accuracy of MTB identification from detected building shadows, for a specific
year of 2013, is 78.1%; (3) over the period of 1993–2013, the total area of built-up areas
in Guangzhou got doubled, and most of the increase happened in the southern and
western regions of the city; and (4) in terms of vertical urban growth, increase in MTBs
took place mainly in the central area of the city during 1993–2001, and then mainly in
surrounding areas of the previous city central area during 2001–2013, generally follow-
ing the urbanization footprint subsequently. The temporal successive characteristic of
vertical urban expansion following horizontal urban expansion, demonstrated in the
case study of Guangzhou, may be an important finding for urban growth study,
especially in China or other developing countries.

Correlation analyses on the relationships between urban horizontal and vertical
growth and three major socioeconomic variables in Guangzhou show that both the
urban horizontal growth and the urban vertical growth of the city are strongly asso-
ciated with the increases of population density, real GDP, and fixed investment during
1993–2013. While population density is the major driving force of horizontal urban
expansion, fixed investment is the major driving force of vertical urban expansion for
the city as a whole. In general, the integrative framework for urban growth detection
and the case study results provided in this article may be very helpful to better under-
standing urban growth and its relationship with local economic development of a large
city.

While being able to utilize the widely available medium resolution Landsat images to
detect MTBs is an outstanding merit, the suggested integrative method has some
imperfections at present as discussed. For example, the MTBs identified from Landsat
images are just a portion of existing MTBs (i.e. those MTBs with detectable shadows) in
the area of a whole large city and their total occupied area can only be approximately
estimated; it is still not easy to obtain high quality images for the same time of different
years with the same sun elevation angles and sun azimuth angles; obtaining the expert-
interpreted sample data needed by SS-coMCRF could be time consuming. Further study
is necessary to reduce or eliminate these imperfections.
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