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ABSTRACT
The recently proposed Bayesian Markov chain random field
(MCRF) cosimulation approach, as a new non-linear geostatistical
cosimulation method, for land cover classification improvement
(i.e. post-classification) may significantly increase classification
accuracy by taking advantage of expert-interpreted data and
pre-classified image data. The objective of this study is to explore
the performance of the MCRF post-classification method based on
pre-classification results from different conventional classifiers on
a complex landscape. Five conventional classifiers, including max-
imum likelihood (ML), neural network (NN), Support Vector
Machine (SVM), minimum distance (MD), and k-means (KM), were
used to conduct land cover pre-classifications of a remotely
sensed image with a 90,000 ha area and complex landscape. A
sample dataset (0.32% of total pixels) was first interpreted based
on expert knowledge from the image and other related data
sources, and then MCRF cosimulations were performed condition-
ally on the expert-interpreted sample dataset and the five pre-
classified image datasets, respectively. Finally, MCRF post-classifi-
cation maps were compared with corresponding pre-classification
maps. Results showed that the MCRF method achieved obvious
accuracy improvements (ranging from 4.6% to 16.8%) in post-
classifications compared to the pre-classification results from dif-
ferent pre-classifiers. This study indicates that the MCRF post-
classification method is capable of improving land cover classifica-
tion accuracy over different conventional classifiers by making use
of multiple data sources (expert-interpreted data and pre-classified
data) and spatial correlation information, even if the study area is
relatively large and has a complex landscape.
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1. Introduction

Rapid human modification of land cover (including land use) has transformed both global
natural conditions and regional environments (Lambin et al. 2001; Lawrence and Chase
2010). Land cover is a key variable that has an impact on many parts of the human and
physical environments. Thoroughly understanding the spatial distribution of different
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land cover classes is essential in the study of global and regional environments and their
changes (Anderson et al. 1976; Loveland et al. 2000). Despite the significance of land cover
as an important environmental variable, our knowledge of land cover and its dynamics is
poor. Recently, remote sensing, as a cutting-edge technique, has provided abundant,
reliable, and multi-temporal land cover data for earth observation at various spatial scales
(Bruzzone, Prieto, and Serpico 1999; Mas 1999). Land cover classification using remotely
sensed images has produced useful thematic maps for scientific study and social applica-
tions (Wilkinson 2005). However, land cover maps derived from remote-sensing imagery
are often judged to be of insufficient quality for many applications because land cover
classification is so complicated that many classifiers cannot produce accurate land cover
maps due to reasons such as spectral confusion, complex landscape, and low quality of
remote-sensing imagery (Lu and Weng 2007; Manandhar, Odeh, and Ancev 2009). For
example, pixel-based classifiers, which are commonly used as sophisticated ways to per-
form land cover classifications, do not take spatial context information into account and,
thus, often suffer from ‘salt and pepper’ noise. One reason for this may be that a pixel may
involve multiple features if it is larger than the area of a specific feature; that is, a pixel may
cover two or more feature classes due to the complicated biophysical environment
(Shekhar et al. 2002; Lu and Weng 2007).

It is still challenging to make a high-quality land cover classification map, even though a
large number of enhanced classification methods have been developed, such as support
vector machines (Brown, Gunn, and Lewis 1999; Hsu and Lin 2002), geostatistical classifiers
(Goovaerts 2002; Park, Chi, and Kwon 2003), knowledge-based algorithms (Dobson, Pierce,
and Ulaby 1996; Schmidt et al. 2004), and hybrid classifiers (e.g. a combination of pixel-based
classifier and object-based classifier) (De Jong, Hornstra, and Maas 2001; Debeir et al. 2002;
Kuemmerle et al. 2006; Li, Meng, et al. 2013). In order to increase the accuracy of a land cover
classification, those advanced approaches make extensive use of as much available informa-
tion as possible, including geometrical information, spectral signature, image transformation,
spatial or contextual information, and other available data (Lu and Weng 2007).

Post-classification operations are expected to be an effective way to improve the
accuracy of a land cover classification. Significant effort has been devoted to developing
various techniques for post-classification operations. In general, there can be two post-
classification methods in land cover classification. One method is to remove noise or
correct misclassified pixels through filters or moving windows based on expert systems,
knowledge-based rules, texture information, or neighbourhood correlations. For exam-
ple, Barnsley and Barr (1996) successfully applied a kernel-based spatial processing
method to improve land use classification in urban areas. Knowledge-based processing
was employed to conduct error correction at the post-classification stage by Murai and
Omatu (1997) and Manandhar, Odeh, and Ancev (2009). The accuracy of urban building
classification was improved significantly through combining unsupervised clustering
and modified co-occurrence matrix-based filtering (Zhang 1999, 2001). Stefanov,
Ramsey, and Christensen (2001) adopted an expert system to sort initial land cover
classification results of central Arizona–Phoenix in the USA by using ancillary data. To
improve land cover classification results from very-high-resolution images, Van de
Voorde, De Genst, and Canters (2007) utilized several techniques including a shadow-
removal technique, knowledge-based rules, and a region-based filter. Thapa and
Murayama (2009) used a combination method, which first extracted similarly classified
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pixels from land cover maps generated by three classifiers and then filled empty pixels
using a fuzzy supervised approach, to conduct more accurate urban mapping.

The other method is to incorporate potentially useful spatial correlation information
between a pixel and its neighbours and other helpful ancillary data into reclassifications
using probabilistic or geostatistical models. This is an available and promising way to
improve classification accuracy by incorporating spatial dependency information and
multi-scale ancillary data with different reliabilities (Carvalho, Soares, and Bio 2006). For
example, Vaiphasa, Skidmore, and De Boer (2006) applied a Bayesian probability-based
classifier to increase the accuracy of mangrove maps using GIS data. Carvalho, Soares,
and Bio (2006) increased the accuracy of some forest tree species classification by
integrating reliable field data and pre-classified data using a direct sequential cosimula-
tion algorithm. Tang et al. (2013) used a multiple-point geostatistical approach to
increase the land cover classification accuracy by integrating multiple-point statistics
extracted from a pre-classified image, pre-classification posterior probabilities, and
training samples.

Recently, Li et al. (2015) proposed a Bayesian Markov chain random field (MCRF)
cosimulation approach for improving land cover classification accuracy (i.e. a post-
classification method) based on expert-interpreted sample data and pre-classified
image data. A test using a simple example (a small area with simple landscape) has
proven the efficacy of the MCRF post-classification method (Li et al. 2015). However,
further studies are necessary to examine the applicability of this method to complex
landscape situations with different pre-classification methods. In this study, we chose
five widely used conventional classifiers to perform pre-classifications of a remotely
sensed image for a relatively large area with a complex and varied landscape. Each
pre-classified image dataset was then used together with an expert-interpreted sample
dataset to conduct a post-classification operation by using the MCRF method. The
objectives are to: (1) examine the performance of the MCRF method for land cover
post-classification in a complex landscape environment, (2) explore how much the MCRF
post-classification method can improve classification accuracy over the pre-classified
results generated by different fast conventional classifiers, and (3) understand the
impacts of these conventional classifiers for pre-classification on the final classification
results.

2. Experimental data sets

2.1. Image data

A medium-resolution (Landsat 8 OLI) image for Wuhan, China, acquired on 17
September 2013, was used in this study. There are total 11 bands in the Landsat 8 OLI
image, including all of the bands (blue, green, red, near-infrared, short-wave infrared 1,
and short-wave infrared 2) from the previous Landsat missions. New band 1 (coastal
aerosol) is designed for coastal and aerosol studies and new band 9 (cirrus) is designed
for cirrus cloud detection (US Geological Survey 2012). Band 8 is a panchromatic band
with a spatial resolution of 15 m. Bands 10 and 11 (thermal infrared) are for surface
temperature detection with a spatial resolution of 100 m. Selecting the appropriate
bands for use is important for the purpose of mapping. This study is to explore the
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performance of the MCRF post-classification method based on land cover pre-classifica-
tion results. Therefore, the six commonly used spectral bands (bands 2–7) of the image
were extracted and stacked for pre-classification to facilitate data processing.

A scene of 1000 rows by 1000 columns with a spatial resolution of 30 m, which covers
the northeastern part of Wuhan with an area of 90,000 ha, was clipped from the image
as the study area (Figure 1). The study area has a relatively heterogeneous and complex
landscape, comprising urban areas, suburb areas, agricultural lands, rivers, hills, wood-
lands, and many water bodies (lakes and ponds), with rugged topography. For this
study, five major land cover classes were mapped, namely, built-up area, farmland,
woodland, waterbody, and bare land (Table 1).

2.2. Expert-interpreted data

In this study, the MCRF post-classification method was employed to make use of both
pre-classification data and expert-interpreted data in order to improve the accuracy of
land cover classification. A total of 4021 data points were interpreted by expert judge-
ment based on professional insight, through integrating information from multiple
sources, including high-resolution aerial images and other reliable reference data, such
as Baidu Maps (map.baidu.com), Bing Maps (www.bing.com/maps), and Google Earth

Figure 1. The Landsat 8 OLI true colour image (b) (R: red, G: green, B: blue) for the study area in
Wuhan, Hubei Province (a), China. The image was acquired on 17 September 2013, with a pixel size
of 30 m × 30 m. The latitude and longitude of the upper left corner of the image are 30°45ʹ04ʺ N
and 114°22ʹ13ʺ E, respectively.

Table 1. Description of related land cover classes.
Class Class symbol Description

Built-up area C1 Industrial, commercial, residential areas or other areas with manmade facilities
Farmland C2 Arable land that is used to plant crops
Woodland C3 Land that is mostly covered with woods or dense growths of trees and shrubs
Waterbody C4 Earth surface covered with water, for example, lake, river, and pond.
Bare land C5 Land that is bare without any cover
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historical imagery (www.google.com/earth), as well as existing local land cover/use
maps. The expert-interpreted data were then split into two groups. In total, 3215 points
(0.32% of the total image pixels in the study area) were used as conditioning sample
data (i.e. hard data) in cosimulation (Figure 2a), and the remaining 806 points were used
for validation (Figure 2b). The expert-interpreted data cannot be used as training data
for pre-classification because they are interpreted from multiple sources mentioned
earlier and thus may not reflect the typical spectra of the image used for pre-classifica-
tion. Training data for pre-classification were discerned only from the original remotely
sensed image of the study area selected for pre-classification. Specific quantities of
expert-interpreted sample data, validation data, and training data for each land cover
class are given in Table 2.

3. Methods

3.1. Basic procedure

Five conventional classifiers, including maximum likelihood (ML), neural network (NN),
Support Vector Machine (SVM), minimum distance (MD), and k-means (KM), were used
to produce pre-classified land cover maps. In order to sufficiently utilize the spectral
information for supervised classifications (i.e. to obtain pre-classification maps with
relatively high accuracies from the selected image purely based on spectral data),
each land cover class was represented by representative samples. The same training

Figure 2. Expert-interpreted data: 3215 points for MCRF cosimulation (a), and 806 points for
validation (b) .

Table 2. Quantities of expert-interpreted sample data for post-classification operations, expert-
interpreted validation data for classification accuracy estimation, and training data for pre-
classifications.
Class Expert-interpreted sample data (pixels) Validation data (pixels) Training data (pixels)

Built-up area 1114 280 470
Farmland 997 250 331
Woodland 142 35 88
Waterbody 889 222 333
Bare land 73 19 60
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data were utilized for the first four supervised classifiers. Spectral separability of the
training data for different land cover classes was estimated using Jeffries–Matusita
distance analysis in order to select proper training samples. Values of Jeffries–Matusita
distance analysis greater than 1.9 indicate that the land cover pairs have relatively good
separability. The values of Jeffries–Matusita distance analysis for the finally selected
training data used in this study ranged from 1.89 to 2.00 (Table 3). Post-classifications
by the MCRF method were conducted on the pre-classified data and expert-interpreted
sample data.

ENVI software was used to perform the ML, NN, SVM, and MD pre-classifications and
ERDAS Imagine was used for the KM pre-classification. For the MCRF post-classifications,
FORTRAN and Python computer codes were used.

3.2. Image post-classification

3.2.1. Markov chain random fields
The MCRF cosimulation algorithm is an extension of the MCRF sequential simulation
algorithm based on the MCRF theory, which was initially proposed by Li (2007a) as the
supporting theory of Markov chain geostatistics and further described with emphasis on
the Bayesian updating view in Li, Zhang, et al. (2013, 2015). An MCRF is a spatial Markov
chain that runs in a space and at any unobserved location decides its state by interacting
with nearest data through Bayesian updating. The local conditional probability distribu-
tion of an MCRF at any unobserved location is decided by a sequential Bayesian
updating process of the prior probability using each of the nearest data within a
neighbourhood as new evidence.

The MCRF local conditional probability function for a specific unobserved location
(here, a location means the centroid of a pixel) u0 is described as

P i0 u0ð Þji1 u1ð Þ; . . . ; im umð Þ½ � ¼
P im umð Þji0 u0ð Þ; . . . ; im�1 um�1ð Þ½ � � � � P i2 u2ð Þji0 u0ð Þi1 u1ð Þ½ �P½i0 u0ð Þji1 u1ð Þ�

P i1 u1ð Þ; . . . ; im umð Þ =P� ½i1 u1ð Þ½ �;
(1)

where u represents the location vector (i.e. coordinates) of a pixel, i0 refers to the land
cover class of the unobserved pixel at location u0, i1 to im denote the classes of the m
nearest data neighbours (i.e., label-informed pixels) around u0, and P indicates a prob-
ability or conditional probability.

Assuming conditional independence of nearest data within a neighbourhood and
using the transiogram notation (Li 2007b), as well as applying the total probably law,
Equation (1) is simplified to

Table 3. Spectral separability of training data for pre-classifications.
Class Built-up area Farmland Woodland Waterbody Bare land

Built-up area 1.8899 1.9991 1.9833 1.9562
Farmland 1.8905 1.9450 1.9814
Woodland 1.9900 2.0000
Waterbody 1.9999
Bare land

INTERNATIONAL JOURNAL OF REMOTE SENSING 931

D
ow

nl
oa

de
d 

by
 [

D
r 

W
ei

do
ng

 L
i]

 a
t 1

4:
12

 0
8 

Fe
br

ua
ry

 2
01

6 



P i0 u0ð Þji1 u1ð Þ; . . . ; im umð Þ½ � ¼ Pi1 i0 h10ð ÞQm
g¼2 Pi0 ig h0g

� �

Pn
f0¼1½Pi1f0 h10ð ÞQm

g¼2 Pf0 ig h0g
� �� ; (2)

where ∑ is a summation symbol, n is the number of classes, f0 refers to all of the possible
classes of the unobserved pixel at location u0, П is a multiplication symbol, and Pi0 ig h0g

� �

is a specific transition probability over the specific separation distance h0g between
locations u0 and ug, which can be fetched from a transiogram model Pi0 ig hð Þ.

A transiogram is theoretically defined as a two-point transition (or conditional)
probability function over the separation distance:

Pij hð Þ ¼ P½Z uþ hð Þ ¼ jjZ uð Þ ¼ i�; (3)

where i andj denote the specific classes of random variables Z uð Þ and Z uþ hð Þ at
locations u and uþ h, respectively; and h denotes the separation distance between
locations u and uþ h. With increasing h, values of Pij hð Þ form a transition probability
curve. Transiogram models can be inferred from experimental transiograms that are
directly estimated from sample data globally (Li 2007b).

3.2.2. MCRF cosimulation
To approximately meet the conditional independence condition of nearest data, the
MCRF sequential simulation algorithm uses a quadrantal neighbourhood, which con-
siders only one nearest datum from each quadrant that sectors the neighbourhood (Li
and Zhang 2007). The MCRF cosimulation algorithm for improving land cover classifica-
tion considers the co-located datum of a covariate field, namely, a pre-classified image,
into its local conditional probability function. Therefore, the MCRF cosimulation model
for improving land cover classification is given as

P i0 u0ð Þji1 u1ð Þ; . . . ; i4 u4ð Þ; r0 u0ð Þ½ � ¼ Qi0r0Pi1 i0 h10ð ÞQ4
g¼2 Pi0 ig h0g

� �

Pn
f0¼1½Qf0r0Pi1f0 h10ð ÞQ4

g¼2 Pf0 ig h0g
� � ; (4)

where Qi0r0 represents the cross-field transition probability from class i0 at location u0 in
the random field being simulated to class r0 at the co-location in the auxiliary field – the
pre-classified image (Li et al. 2015).

3.2.3. Inputs and outputs of MCRF cosimulations
Besides expert-interpreted sample data and pre-classified image data, two sets of para-
meter data are required in the MCRF cosimulation algorithm for land cover post-classifica-
tion. They are transiogrammodels and the cross-field transition probability matrix (Li et al.
2015). Transiogrammodels are used to represent the spatial auto and cross correlations of
classes in the field to be simulated and they can be inferred from experimental transio-
grams that are directly estimated from sample data (Li 2007b). Transiogram model joint
inference may be done using two methods – the mathematical model method and the
linear interpolation method (Li and Zhang 2010). In this study, because we have sufficient
expert-interpreted sample data to generate reliable experimental transiograms, we used
the efficient linear interpolation method to obtain the entire set of transiogram models.
The cross-field transition probability matrix represents the correlations between classes of
the field being simulated and the classes of the pre-classified image, and it can be simply
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D
ow

nl
oa

de
d 

by
 [

D
r 

W
ei

do
ng

 L
i]

 a
t 1

4:
12

 0
8 

Fe
br

ua
ry

 2
01

6 



estimated using the transitions from the sample data set to their corresponding co-
located data in the pre-classified image (Li, zhang, et al. 2013).

The five conventional classifiers aforementioned were used to pre-classify the
selected remotely sensed image to obtain five pre-classified image datasets for use in
the MCRF post-classification operations. A total of 100 simulated realizations were
generated for each cosimulation case (there are a total of five cases for different pre-
classifications based on different conventional classifiers in this study), and an optimal
classification map was further obtained according to the maximum probabilities esti-
mated from the set of simulated realizations. The accuracy of each optimal classification
map was calculated using the validation sample dataset. By comparing with those pre-
classification results, classification accuracy improvements made by post-classification
operations were finally available.

4. Results

4.1. Improvement over maximum likelihood classification

A comparison of classification accuracies between the pre-classification by the ML
classifier and the post-classification by MCRF cosimulation is presented in Table 4. The
overall accuracy (OA) and kappa coefficient (κ) of the ML pre-classification map are
81.9% and 0.762, respectively. However, the OA and κ for the MCRF post-classification
map are 86.6% and 0.820, respectively. Apparent improvement in land cover classifica-
tion accuracy is made by the MCRF method. In the pre-classification map, the misclassi-
fications among the five classes are explainable by spectral confusion (e.g. some built-up
area pixels were misclassified into farmland and bare land, and some farmland pixels
were misclassified into woodland). After post-processing by MCRF cosimulation, there
are obvious increases in the producer’s accuracies of built-up area (from 72% to 78%),
farmland (from 83% to 90%), and woodland (from 83% to 91%). Checking the user’s
accuracies, one can see that significant improvements for woodland (from 50% to 78%)
and bare land (from 45% to 94%) were made by the post-classification. In addition,
before post-classification was made, much noise (i.e. ‘pepper and salt effect’) in the pre-
classification map (Figure 3a) can be seen. This noise is likely a result of spectral
confusion due to lack of spectral separability among some land cover classes in the
study area. After post-classification, the ‘salt and pepper’ noise, which is a common
problem for pixel-based classifications, is mostly removed by the MCRF method
(Figure 3b). A drawback is that linear features (e.g. roads), which were partially captured
by the pre-classification, were mostly lost in the MCRF post-classification process.

4.2. Improvement over neural network classification

Table 5 and Figure 4 present the pre-classification results by the NN classifier and the
corresponding post-classification results by the MCRF method. Compared with the NN
pre-classification, classification accuracy improvement made by the MCRF post-classifi-
cation is notably large, with 10.4% increase in OA and 0.128 increase in the κ. In the pre-
classification map, woodland was strongly overestimated, and the other two land cover
classes, namely, bare land and built-up area, were also overestimated to some extent,
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based on the spectral signatures derived from the remotely sensed image, while farm-
land and waterbody were underestimated (Table 5). Much farmland in the NN pre-
classified map (Figure 4a) was misclassified into woodland, and a portion of farmland
was also misclassified as built-up area, thus resulting in low producer’s accuracy (57%)
for farmland and low user’s accuracy (30%) for woodland. Low user’s accuracy (48%) also
occurred for the bare land in the NN pre-classification map due to the misclassification
of some built-up area and farmland pixels. Before post-classification, some of waterbody
pixels were misclassified as farmland and built-up area because they were spectrally
confused because some waterbody areas in the study area were covered by dense water
plants. The MCRF post-classification operation changed this situation by correcting most
misclassifications, except that some build-up area pixels were misclassified into farm-
land, causing some decreases in the producer’s accuracy of built-up area and the user’s
accuracy of farmland. Similarly, linear features (mainly roads) were not captured, while
most noise was removed in the post-classification map.

4.3. Improvement over Support Vector Machine classification

The pre-classification of the remotely sensed image by the SVM classifier has a relative
higher OA and κ compared to that by NN, although the same training data were used. SVM
generally performed poorly in separating built-up area from farmland, so that built-up area
has a low producer’s accuracy of 65% and farmland has a low user’s accuracy of 62%. It also
could not effectively separate waterbody from farmland, thus leading to a relatively low
producer’s accuracy for waterbody (82%) (Table 6). Before MCRF cosimulation was applied,
some waterbody pixels were misclassified as farmland, and some built-up area pixels were
also misclassified into farmland (Figure 5a). The former problem should be caused by the
spectral confusion between waterbody and farmland because some waterbody areas in
the study area were covered by dense water plants. The latter problem also occurred in the
ML pre-classification. After post-processing by MCRF cosimulation, most of misclassified
waterbody pixels (which were misclassified into farmland in pre-classification) were cor-
rected with the help of the post-classification (Figure 5b). However, some correctly classi-
fied farmland in the pre-classification map was mistakenly changed to built-up area and
waterbody in the post-classificationmap. This problemmay be attributed to the smoothing

Figure 3. ML pre-classification (a) and corresponding MCRF post-classification (b) .
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effect in the optimal classification map and the filtering effect caused by incorporation of
spatial correlations in the MCRF cosimulation model. Because built-up area, farmland, and
waterbody are the major land cover classes in this study, their conjunction probabilities
were relatively high sometimes. Even so, the post-classification by the MCRF method
increased the OA by 4.6% and κ by 0.057. Specifically, post-classification improved the
producer’s accuracies of built-up area, woodland, waterbody, and bare land by 11%, 6%,
13%, and 5%, respectively (with 10% accuracy decrease for farmland) (Table 6), and also
increased the user’s accuracy of farmland by 11%, finally yielding a less dispersed land
cover class map. The filtering effect of the MCRF post-classification method to noise was
clear, despite its inability to capture linear features as a common problem of two-point
spatial statistical models (Figure 5b).

4.4. Improvement over minimum distance classification

The OA of the MD pre-classification (Figure 6a) is the lowest (67.1%) compared with the
OAs of the pre-classified images by other conventional classifiers. This is because of the
nature of the MD classifier, which generally has good performance when the distance
between the mean values of every pair of classes is large compared with the variance of
each class with respect to its mean. The MD classifier has a certain limitation if the
spectral variance of each class is large, because it is insensitive to different degrees of
spectral variance. In this case, the low classification accuracy of the MD pre-classification
can be explained by the complex landscape, which has much higher spectral confusion
among different land cover classes. As shown in Table 7, almost half of the built-up area
and bare land in the image was classified wrongly by MD. Before MCRF post-classifica-
tion was applied, some waterbody pixels were misclassified as farmland due to the
spectral confusion between them caused by dense water plants in some waterbodies.
The MCRF post-classification greatly changed the pre-classification results (Figure 6b).
The OA in the post-classification map reached 83.9% with a remarkable improvement of
16.8%, although the co-image (i.e. the pre-classified image used as an auxiliary dataset)
had a low accuracy (67.1%). Both producer’s accuracies and user’s accuracies of all land
cover classes were increased to some extent after MCRF post-classification.

Figure 4. NN pre-classification (a) and corresponding MCRF post-classification (b) .
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4.5. Improvement over k-means classification

In the pre-classification map produced by the unsupervised KM classifier, farmland was
not well distinguished from built-up area and woodland, and waterbody was not well
separated from farmland and woodland (Table 8, Figure 7). This means they had some
spectral characteristics in common. Similar to the classifications by other conventional
methods except for SVM, the KM pre-classification has quite low user’s accuracy for
woodland, because some pixels of farmland and waterbody were misclassified as wood-
land. The reason for these problems may be because crops, water plants, and urban
vegetation have similar image digital number values in the remotely sensed image used
for pre-classification. In addition, many built-up area pixels were misclassified into bare
land, which means some built-up area and some bare land could not be effectively
separated by the KM classifier. With the help of expert-interpreted ancillary data and the
pre-classification image based on KM, the MCRF post-classification greatly increased the
OA from 69.1% to 85.9% and the κ from 0.612 to 0.811 (Table 8). However, the
producer’s accuracy of built-up area had little improvement, and the user’s accuracy of
farmland also did not improve much, because some built-up area pixels were misclassi-
fied into farmland in the post-classification map. This may be explained by the smooth-
ing effect normally shown in the optimal classification map and the filtering effect of the

Figure 5. SVM pre-classification (a) and corresponding MCRF post-classification (b) .

Figure 6. MD pre-classification (a) and corresponding MCRF post-classification (b) .
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MCRF method, which caused some small fragments (one to a few pixels) of built-up area
within large farmland patches to be classified wrongly into farmland. However, as shown
in Table 8, the classification improvements for farmland, woodland, waterbody, and bare
land were apparent in both producer’s accuracies and user’s accuracies, after post-
classification was applied. A special feature for the KM pre-classification (Figure 7a) is
that it shows better ability in extracting linear features (e.g. road and highway) than the
other four classifiers due to manual reclassification in the second step of the method.
But this did not contribute more to the MCRF post-classification because the two-point
statistics-based MCRF model used here cannot capture linear features.

4.6. Comparison of different post-classification cases

Data in Table 9 summarize the results of the five pre-classification and post-classification
pairs, which indicate that theMCRFmethod indeed can largely improve the accuracy of land
cover classification through post-classification, no matter which of the five conventional

Figure 7. KM pre-classification (a) and corresponding MCRF post-classification (b) .

Table 9. Overall accuracy improvements of MCRF post-classifications over different pre-classifications
of land cover classes.

Producer’s Accuracy (%) User’s Accuracy (%)

Class

Overall accuracy (%) kappa coefficient C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

ML pre-classification 81.9 0.762 72 84 83 93 79 93 73 50 98 45
Post-classification 86.6 0.820 78 90 91 94 79 92 75 78 98 94
Improvement 4.7 0.058 6 6 9 1 0 −1 3 28 0 48
NN pre-classification 76.6 0.697 88 57 89 83 79 81 79 30 96 48
Post-classification 87.0 0.825 81 91 94 89 89 93 75 85 97 94
Improvement 10.4 0.128 −6 34 6 6 11 12 −4 55 1 46
SVM pre-classification 79.8 0.736 65 93 86 82 79 94 62 83 98 88
Post-classification 84.4 0.793 76 84 91 95 84 91 73 80 93 80
Improvement 4.6 0.057 11 −10 6 13 5 −4 11 −3 −5 −8
MD pre-classification 67.1 0.592 53 78 86 70 58 80 68 47 76 18
Post-classification 83.9 0.786 76 88 94 89 63 90 72 87 93 86
Improvement 16.8 0.194 23 10 9 18 5 10 5 40 17 68
KM pre-classification 69.1 0.612 78 61 91 64 63 76 71 37 95 17
Post-classification 85.9 0.811 79 90 94 91 74 94 74 85 94 88
Improvement 16.8 0.199 1 28 3 27 11 17 3 48 0 70
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classifiers was used for pre-classification. Among the five conventional classifiers used for
pre-classification, ML generated the highest OA, while MD produced the lowest. The overall
accuracies of pre-classifications by the conventional classifiers are 81.9% (ML), 79.8% (SVM),
76.6% (NN), 69.1% (KM), and 67.1% (MD) in a descending sequence. The MCRF post-
classification method increased the OAs by 4.7% over the ML classifier, 10.4% over the NN
classifier, 4.6% over the SVM classifier, 16.8% over the MD classifier and the KM classifier,
with an accuracy improvement sequence of SVM < ML < NN < MD = KM. In general, the
lower the pre-classification accuracy, the higher the MCRF post-classification improvement
will be. In some cases,MCRF post-classification caused some negative effects in classification
accuracies of individual land cover classes, which mostly occurred in user’s accuracies,
especially for the post-classification case on the SVM pre-classification. However, these
negative effects are negligible in comparison with the positive effects.

Except for the SVM pre-classification, minor land cover classes, namely, bare land and
woodland, had very low user’s accuracies (less than 50%) in pre-classifications. However,
the MCRF method largely improved their user’s accuracies in post-classifications.
Improvements range from 46% to 70% for bare land, and from 28% to 55% for woodland.
This means that most conventional classifiers have difficulties to accurately classify minor
land cover classes, but the MCRF post-classificationmethod can largely solve this problem.

Comparing all of the post-classifications with all of the corresponding pre-classifica-
tions, one can find that, in addition to classification accuracy improvement, the MCRF
post-classification results have some other common characteristics, which are all essen-
tially related with the smoothing effect of the MCRF cosimulation model:

(1) The MCRF post-classifications removed most ‘salt and pepper’ noise that appeared in
pre-classification maps. This means that the MCRF method has the filtering effect to
noise.

(2) Fine linear features appearing in pre-classification maps mostly disappeared in
post-classification maps. These very narrow linear features in pre-classification
maps were fragments of linear ground objects (mostly roads, and some ridges
between lotus pools), partially captured by conventional classifiers. This means
that the MCRF post-classification method cannot capture fine linear features. This
inability should be common to two-point statistics-based spatial models.

(3) In the post-classifications, there were always some built-up area pixels to be
misclassified into farmland, and in most cases there were also some waterbody
pixels to be misclassified into farmland. This problem should be caused by the
smoothing effect attached with the MCRF post-classification maps, which
removed those isolated small built-up area or waterbody patches (as single pixels
or clusters of only a few pixels) within large farmland patches.

5. Discussions

5.1. Smoothing effect

The MCRF post-classification method shows apparent smoothing effect in post-classified
results. The smoothing effect includes the filtering effect of spatial models through
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incorporating data dependency, and the smoothing effect caused by optimization for
obtaining an optimal classification map. The former is caused by the neighbourhoods
and two-point spatial measures used by spatial statistical methods, which cannot
effectively capture (or can remove) linear features. This is because the neighbourhood
of spatial statistical models uses data in a round area (e.g. circle, ellipse, or even square,
in two dimensions), which is normally much wider than many narrow linear features.
Thus, estimated values on a linear feature based on the data in a neighbourhood (if it is
much wider than the linear feature) often reflect the classes outside the linear feature’s
area, consequently erasing the narrow linear features. It is widely known that two-point
spatial measures cannot capture curvilinear features. This is the major smoothing effect
responsible for losing linear features, and also the major reason for filtering noise.
Multiple-point statistical methods may be better in capturing curvilinear features, but
it only can approximately reproduce the known and relatively simple patterns from a fed
training image (see Tang et al. 2013).

The smoothing effect caused by optimization for obtaining an optimal classification
map based on maximum probabilities estimated from a number of simulated realisation
maps is widely known in spatial statistics. In this study, because we used the optimal
classification map as the final post-classification map, this smoothing effect also exists,
but it does not hide the filtering effect of spatial statistical models. Figure 8 displays a
part of the MCRF post-classification map based on the NN pre-classification and some
other simulated results. The simulated realization map (Figure 8e) apparently shows
more details than the optimal map (Figure 8d) does. The occurrence probability map of
built-up area (Figure 8f) demonstrates the uncertainty of built-up area among different
simulated realization maps, which reflects the credibility of built-up area in the optimal
map. This means that the optimal map, that is, the post-classification map shown in this
paper, has smoothing effect caused by the optimization. However, the simulated realiza-
tion map still shows strong smoothing effect to the pre-classification map (Figure 8c),
which filters out both noise and linear features. This smoothing or filtering effect carried
by simulated realizations should be attributed to the neighbourhoods and two-point
spatial measures of spatial statistical models.

5.2. Comparison with the majority spatial filter

The MCRF cosimulation model used in this study for post-classification is different from
ordinary filters for filtering noise. Post-classification by a spatial filter with a moving
window can remove some noise, and the filtering effect depends on the size of the local
window (or neighbourhood). Such smoothing methods sometimes may improve classi-
fication results a little, but sometimes may not improve the results at all or even cause a
decrease in accuracy. This is because such filtering methods do not incorporate new
supportive information into the post-classifications, unless a specific expert system is
combined with the filter. However, the major purpose of the MCRF post-classification
method is to improve classification accuracy by incorporating expert-interpreted data
from multiple data sources and spatial correlation information into post-classification
operations. Of course, filtering noise is a common capability of spatial statistical models
due to their incorporation of spatial dependency.
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We tested a majority spatial filter with 3 × 3 and 7 × 7 window sizes. Our results (Figure 9)
showed that the effect of the filter is limited: It does filter out isolated pixels and small pixel
groups, and the filtering effect strengthens with increasing window size (Figure 9d and 9e),
but it does not improve accuracy in general (sometimes produces a small increase, and
sometimes a small decrease). This is because it does not incorporate credible information
from other sources to correct the misclassified pixels (e.g. the misclassified pixels from water-
body to built-up area and woodland in Figure 9c). However, the MCRF cosimulation model
corrected the misclassifications (Figure 9f).

Figure 8. The Landsat 8 OLI true colour image of the study area (a), the enlarged false colour image
of a subarea (b), corresponding NN pre-classification map (c), corresponding optimal map of MCRF
post-classification (d), one simulated realisation of MCRF post-classification (e), and corresponding
occurrence probability map of built-up area (f). The latitude and longitude of the upper left corner of
the enlarged image are 30°40ʹ09ʺN and 114°27ʹ32ʺE, respectively.
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6. Conclusions

This study proved that, as a non-linear geostatistical method, the Bayesian MCRF
cosimulation algorithm is an excellent method for improving accuracy of land cover
classifications produced by conventional classifiers, when an expert-interpreted sample
dataset is available for post-classification, even if the study area is relatively large and
has a complex landscape. Five representative conventional classifiers (ML, NN, SVM, MD,
and KM) were tested in this study; four are supervised methods, and one is a non-
supervised method. The conventional classifiers achieved different land cover classifica-
tion accuracies from the same remotely sensed image in pre-classifications, ranging from

Figure 9. The Landsat 8 OLI true colour image of the study area (a), the enlarged false colour image
of a subarea (b), corresponding NN pre-classification map (c), corresponding post-classification map
by the majority spatial filter with a 3 × 3 window (d), corresponding post-classification map by the
majority spatial filter with a 7 × 7 window (e), and corresponding optimal map of MCRF post-
classification (f). The latitude and longitude of the upper left corner of the enlarged image are 30°
41ʹ33ʺN and 114°38ʹ06ʺE, respectively.
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67.1% (MD) to 81.9% (ML). However, the MCRF post-classification method made notable
improvements in accuracy over all of the pre-classifications from the conventional
classifiers, and the improvements range from 4.6% to 16.8%. In addition, most noise in
the pre-classified maps was also removed by the post-classification operations. These
improvements are mainly attributed to the MCRF cosimulation algorithm, which makes
full use of spectral information (by pre-classified image data), expert knowledge and
ancillary data (by sample data interpretation), and contextual information (by spatial
correlation measurements).

One trade-off of the post-classifications by the MCRF method is that the smoothing
effect in optimal classification land cover maps, brought by the MCRF cosimulation,
removes most of linear features (mainly roads). However, even in the pre-classification
maps, these linear features mostly are just partially captured road fragments and narrow
striped objects (e.g. separating stripes in lakes for private fishery or lotus planting),
therefore having little value for making schematic land cover/use maps. Considering that
road network data are usually available from local transportation agencies, if they are
needed in a land cover/use map, it is better to add the needed available road network
data as a data layer to the final land cover map rather than to derive their fragments
through classifying a remotely sensed image. Apparently, the other trade-off of the post-
classification operation is the needed sample data interpretation process, which may be
time consuming. These problems may be relieved by further efforts in algorithm devel-
opment. For example, incorporating multiple-point statistics or other feature indices in
the MCRF cosimulation algorithm may be helpful in capturing some linear features such
as sharp river banks, and an automatic or semi-automatic method for accurate sample
data interpretation may largely reduce the burden of expert interpretation. Nevertheless,
the obvious accuracy improvement made by the MCRF method over conventional
classifiers means that this post-classification method is promising in land cover
classifications.
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