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Incorporating Spectral Similarity Into Markov Chain
Geostatistical Cosimulation for Reducing Smoothing

Effect in Land Cover Postclassification
Weixing Zhang, Weidong Li, Chuanrong Zhang, and Xiaojiang Li

Abstract—Spatial statistics provides useful methods for incor-
porating spatial dependence into land cover classification. How-
ever, the geometric features of land cover classes are difficult to
be captured by geostatistical models due to smoothing effect. The
objective of this study is to incorporate spectral similarity into
the Markov chain random field (MCRF) cosimulation (coMCRF)
model, that is, to propose a spectral similarity-enhanced MCRF
cosimulation (SS-coMCRF) model, for land cover postclassifica-
tion so that postclassification will cause less geometric loss. Two
mutually complementary spectral similarity measures, Jaccard in-
dex and the spectral correlation measure, were employed as a con-
straining factor in SS-coMCRF. One medium spatial resolution
scene with a complex landscape and one very high spatial resolu-
tion scene with an urban landscape were selected for case studies.
Neural network classifier and support vector machine classifier
were used to conduct land cover preclassifications. Both coMCRF
and SS-coMCRF were used to postprocess preclassified images
based on expert-interpreted sample datasets from multiple data
sources. Compared with preclassified results that depend on only
spectral information of pixels, postclassifications by both mod-
els achieved similar significant improvements in overall accuracy.
However, compared with coMCRF, the SS-coMCRF model appar-
ently improved postclassified land cover patterns by effectively cap-
turing some geometric features (e.g., boundaries and linear stripes)
and more details of land cover classes. In general, incorporating
spectral similarity into land cover postclassification through SS-
coMCRF may contribute significantly to the “shape” or geometric
accuracy of classified land cover classes.

Index Terms—Expert interpretation, geometric feature, land
cover class, Markov chain random field, postclassification, pre-
classification, spectral similarity measure.

I. INTRODUCTION

R EMOTELY sensed images have been widely used in land
cover classification because of their capability of detect-

ing earth’s surface spatially, temporally, and spectrally [1], [2].
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However, it is still challenging to make a high-quality land cover
map using remotely sensed images, especially in medium or
coarse spatial resolutions, because of spectral confusion, com-
plex landscapes, limitations of classification methods, and low
quality of remotely sensed images [3], [4]. Despite these disad-
vantages, remotely sensed images still provide abundant infor-
mation for land cover classification if an appropriate approach
is used [5]. A large number of enhanced classification meth-
ods have been developed, such as artificial neural networks
(NN) [6], [7], support vector machines (SVM) [8], [9], geo-
statistical classifier [10], [11], contextual classifiers [12], [13],
knowledge-based algorithms [14], [15], Markov random field-
based classifiers [16], and hybrid classifiers (e.g., a combination
of pixel-based classifier and object-based classifier) [17]–[19].

Besides enhanced classification methods, postclassification
operation is regarded as an effective way to improve the accu-
racy of a preclassified land cover map [20]. For example, Mesev
[21] used population information in urban image postclassi-
fication sorting. To remove “speckled” or “salt and pepper”
noise produced by pixel spectra-based classifiers, some noise
removal methods were proposed [22]–[24]. In [25], postclassi-
fication correction was applied to improve land cover preclas-
sification by incorporating ancillary data and knowledge-based
logic rules. Textural analysis (using cooccurrence matrix) was
used to conduct more accurate urban mapping from high spatial
resolution satellite images [26], [27]. Stefanov et al. [28] and
Kahya et al. [29] adopted an expert system to sort initial land
cover classification results using ancillary data (such as land use
data).

Tobler’s first law of geography states that “Everything is re-
lated to everything else, but near things are more related than dis-
tant things” [30]. To a large extent, this implies that nearer pixels
are more likely to belong to the same class. Therefore, spatial
statistics may provide useful methods for incorporating spatial
autocorrelation information into land cover classification. For
example, in order to improve the classification of forest tree
species, Carvalho et al. [31] used the direct sequential cosim-
ulation method to integrate reliable field data and the posterior
probability data generated by the maximum likelihood preclas-
sification, and, thus, obtained more continuous forest covers
in final classification. Recently, Li et al. [32] used a MCRF
cosimulation (coMCRF) model and expert-interpreted sample
data to postprocess the preclassified image data generated by a
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Fig. 1. North-south directional remotely sensed image spectral cross section
in Wuhan city. (a) Line of pixels along the red line. (b) Corresponding spectral
reflectance values of pixels of six bands along the line.

conventional classifier to increase the classification accuracy
of land cover classes. However, the geometric features of land
cover objects are difficult to be reproduced by geostatistical
methods that traditionally use two-point statistics and circular
neighborhoods [33]. It seems that use of multiple-point statis-
tics may solve this problem to some extent, but it only can
approximately reproduce the known and relatively simple pat-
terns provided by a fed training image (see [34]). In order to
reduce the smoothing effect caused by the neighborhoods used
in geostatistical models, incorporating spectral dissimilarity of
pixels between different classes and spectral similarity of pix-
els within the same class as spatial constraints in land cover
postclassification should be promising.

Spectral similarity measures have been widely used in im-
age classification, especially in hyperspectral image classifica-
tion [35]–[37], because pixels belonging to the same land cover
class are more likely to have similar spectral features. Some of
the most popularly used spectral similarity measures are spec-
tral angle measure (SAM), Euclidean distance measure (EDM),
spectral correlation measure (SCM) (i.e., Pearson correlation
coefficient), and spectral information divergence (SID). In this
study, Jaccard index (also known as Jaccard similarity coeffi-
cient) and SCM, which are mutually complementary, were used
to measure spectral similarity between two pixels, and used as
spatial constraints to enhance the geometric features of land
cover classes in postclassification, because spectral reflectance
tends to be similar for pixels belonging to the same class in real
world at a local scale but change dramatically with class changes
along a direction (see Fig. 1). The objective of this study is to
incorporate the spectral similarity measures into the coMCRF
model, that is, to propose a spectral similarity-enhanced coM-
CRF (SS-coMCRF) model, for reducing the geometric infor-
mation loss of land cover objects in postclassification. In case
studies, NN classifier and SVM classifier were used for pre-
classification. To examine the performance of the SS-coMCRF

Fig. 2. Flowchart for the whole procedure from preclassification to final post-
classification results using the SS-coMCRF model.

model, we compared it with the coMCRF model using expert-
interpreted sample datasets with different sample densities in
two case studies. Here, expert-interpreted sample data refer to
the pixel label data discerned by expert judgment based on
professional insight and integrative information from multiple
sources (e.g., various high resolution images, Google Earth his-
torical images, and existing land use maps).

II. METHODS

NN classifier and SVM classifier were used separately to
make preclassifications. For conducting preclassifications, rep-
resentative samples were selected manually from the original
images as training data. The same training samples were fed
to both classifiers to generate preclassified images. Then, coM-
CRF and SS-coMCRF were used, respectively, to postprocess
the preclassified images. The NN classifier and SVM classi-
fier modules of the ENVI software were used in this study.
Both coMCRF and SS-coMCRF models were implemented by
Python programs. A flowchart in Fig. 2 shows the general al-
gorithm from preclassification to final postclassification results
using the SS-coMCRF model.

A. Preclassifiers

NN classifier is designed to work like an animal’s brain.
Basically, two common learning paradigms, that is, the least-
mean-square algorithm and the error back-propagation algo-
rithm, may be used in the NN classifier. In this study, the latter
was employed. Unlike the maximum likelihood or other sta-
tistical methods, NN is a nonparametric and distribution-free
classification algorithm. In addition, there is no requirement for
a priori knowledge of the statistical characteristics of the preset
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classes [6], [7], [38]. Furthermore, the capability of learning
and adaptively simulating complicated information makes this
method capable to deal with various types of remotely sensed
data, including high-resolution images [39]. However, the closed
operation in the hidden layer makes NN work like a black box
so that things behind are difficult to be well understood [20],
[40]. In this study, NN was implemented with one hidden layer
and a thousand training iterations.

SVM classifier is another advanced supervised classifier used
in classification of remotely sensed imagery, based on machine-
learning algorithms, such as NN [2]. The original SVM is a bi-
nary classifier. However, the distinction of multiple classes gets
involved in most remotely sensed image classifications. Thus,
multiple SVMs are needed to classify an image. Two combined
multiple SVM classifiers are used commonly. One is called the
“one against all” approach, which means a bunch of binary clas-
sifiers are used to separate one class from the rest. The other
is called the “one against one” approach, which means that a
series of classifiers are applied to each pair of classes [41], [42].
The SVM classifier has great performance in nonlinear classi-
fications with help of a kernel function, similar to that in linear
classifications. To some extent, the performance of SVM relies
on the selection of the kernel function, its parameters, and soft
marginal parameters [2]. In this study, SVM with the pairwise
classification strategy (i.e., the “one against one” approach) was
employed.

B. Markov Chain Random Field Cosimulation Model

The Bayesian coMCRF model extends the MCRF model
based on the MCRF theory, which was initially proposed by
Li [43] as the supporting theory for Markov chain geostatistics
and further described with emphasis of the sequential Bayesian
updating view in [32] and [44]. The local conditional probability
distribution of the MCRF at any unobserved location is decided
by sequential Bayesian updating over the prior probability using
each of the nearest data within a neighborhood as new evidence.
The MCRF local conditional probability function for a specific
unobserved location u0 is described as

p [i0 (u0) |i1 (u1) , . . . , im (um )]

= p [im (um ) |i0 (u0) , . . . , im−1 (um−1)] . . . p [i2 (u2)

|i0(u0) , i1(u1)] · p[i0(u0) |i1(u1)]
p [i1 (u1) , . . . , im (um ) ]/p[ i1 (u1)]

(1)

where i1 to im are the states of the m nearest neighbors around
the unobserved location u0 ; the left-hand side of the equation is
the posterior probability of state (or class) i0 at the location u0 ;
the denominator in the right-hand side is a constant; p[i0
(u0)|i1(u1)] represents the prior probability; and the left portion
of the right-hand side are likelihood functions for updating the
prior probability. Based on the quantitative relationship p[i0(u0)
|i1(u1)] = p[i1(u1)|i0(u0)] × p[i0(u0)]/p[i1(u1)], it is also
feasible to use p[i0(u0)] as the prior probability; then there
will be one more likelihood function p[i1(u1)|i0(u0)] in (1).

Assuming conditional independence of nearest data within
a neighborhood [43] and using the transiogram notation [45],

Fig. 3. Quadrantal MCRF neighborhood under the conditional independence
assumption of nearest data. (a) Search area for seeking nearest neighbors to
estimate the class of land cover at the uninformed central point u0 . (b) Sectored
neighborhood, which considers one nearest datum from each quadrant if one
datum can be found from the quadrant. Black solid dots: informed data (sample
data or previously simulated data). Red dot: the uninformed pixel being esti-
mated. Green dots: selected nearest data for the neighborhood. Arrows represent
transition probability directions (see [32]).

as well as applying the total probably law, the above (1) is
simplified to

p [i0 (u0) |i1 (u1) , . . . , im (um )]

=
pi1 i0 (h10)

∏m
g=2 pi0 ig

(h0g )
∑n

f0 =1 [pi1 f0 (h10)
∏m

g=2 pf0 ig
(h0g )]

(2)

where n is the number of classes, and pi0 ig
(h0g ) is a specific

transition probability over the distance lag h0g , which can
be fetched from a transiogram model pi0 ig

(h). The sequen-
tial Bayesian updating idea and the conditional independence
assumption for spatial data were recently also used in a
spatial model for semantic segmentation of remote sensed
imagery [46].

To approximately meet the conditional independence condi-
tion of nearest data, the MCRF model uses a quadrantal neigh-
borhood, which considers only one nearest datum from each
quadrant that sectors the neighborhood (see Fig. 3) [47]. The
coMCRF model for improving land cover classification consid-
ers the colocated datum of a preclassified image that serves as
a covariate field. Therefore, the coMCRF model used here is
given as

p [i0 (u0) |i1 (u1) , . . . , i4 (u4) ; r0 (u0)]

=
qi0 r0 pi1 i0 (h10)

∏4
g=2 pi0 ig

(h0g )
∑n

f0 =1 [qf0 r0 pi1 f0 (h10)
∏4

g=2 pf0 ig
(h0g )]

(3)

where qi0 r0 represents the cross-field transition proba-
bility from class i0 at the location u0 in the pri-
mary categorical field being simulated to class r0 at
the colocation in the covariate field of the preclassified
image [32].

C. Spectral Similarity Measures

There are mainly two groups of spectral similarity mea-
sures: deterministic measures and stochastic measures [35],
[48]. SAM, EDM, and SCM belong to deterministic mea-
sures, and SID is one of stochastic measures. Jaccard index,
which was rarely used in remote sensing, should also belong to
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Fig. 4. Examples of spectral reflectance value vectors at different sample
locations, for demonstrating the characteristics of the Jaccard index and SMC in
distinguishing different land cover classes. (a) Spectral reflectance value vectors
of three sample pixels for built-up areas 1 and 2 (both are residential areas) and
forest. (b) Spectral reflectance value vectors of three sample pixels for built-up
area 3 (port), built-up area 4 (iron industry), and waterbody.

deterministic measures. After testing these measures separately
and pairwise in the coMCRF model, we found that using the two
mutually complementary measures, Jaccard index and SCM (see
Fig. 4), as an integrated constraining factor had the best effect
in terms of both computational efficiency and better capture
of geometric shapes. Thus, Jaccard index and SCM were used
as spectral similarity measures to construct the integrated con-
straining factor in the proposed SS-coMCRF model.

1) Jaccard Index: Jaccard index [49] is one of the metrics
used to measure the similarity, dissimilarity, and distance of two
sample sets [50], which is defined as the ratio of the region of
the intersection to the region of the union of two sample sets

J (A,B) =
|A ∩ B|
|A ∪ B| (4)

where A and B are two sample sets for comparison. Practi-
cally, given two spectral vectors x = (x1 , x2 , . . . , xn ) and
y = (y1 , y2 , . . . , yn ) with all xi, yi ≥ 0, to estimate their spec-
tral similarity, their Jaccard index is described as

J (x,y) =
∑

i min (xi, yi)∑
i max (xi, yi)

(5)

where max and min are pointwise maximum operator and point-
wise minimum operator, respectively.

The drawback of Jaccard index is that it only responds to
vector differences in magnitude. Thus, it is incapable of dis-
tinguishing between two classes if their spectral value vectors
have very different shapes but similar magnitudes. To deal with
this problem, SCM is applied to complement the Jaccard index
to measure spectral similarity. SCM is a commonly used mea-
sure for the linear relationship between two random variables
[35], but SCM also has its intrinsic drawback—it will fail if
the shapes of two vectors are similar but their magnitudes are
largely different [51]. For example, in Fig. 4(a), the Jaccard in-
dex value between built-up area 1 and built-up area 2 is 0.8123,
and the Jaccard index value between built-up area 1 and forest is
0.8323. These two values are very close, which means Jaccard
index is incapable of distinguishing forest out of built-up area.
However, the SMC value of built-up area 1 and built-up area 2
is 0.8320, and the SMC value between built-up area 1 and forest
is 0.6464. These two values have much larger difference, which
means that SMC is capable of identifying forest out of built-up
area in this case. On the contrary, in Fig. 4(b), the SMC value
between built-up area 3 and built-up area 4 is 0.9826, and the
SMC value between built-up area 3 and waterbody is 0.9565.
These two values are very close, which means SMC is incapable
of distinguishing waterbody out of built-up area. However, the
Jaccard index value of built-up area 3 and built-up area 4 is
0.9682, and the Jaccard index value between built-up area 3 and
waterbody is 0.8927. These two values have larger difference
in comparison with the SMC values, which means that Jaccard
index is capable of identifying waterbody out of built-up area.

2) Spectral Correlation Measure: The SCM is able to reflect
the relationship between two vectors. Given two vectors x =
(x1 , x2 , . . . , xn ) and y = (y1 , y2 , . . . , yn ) with all xi, yi ≥ 0,
the SCM ρxy of vectors x and y is defined as

ρxy =
Cxy√

Cxx · Cyy
(6)

where Cxy is the covariance of vectors x and y, Cxx is the
variance of vector x, and Cyy is the variance of vector y. Here,
we have ρxy ∈ [−1,+1], where +1 means totally positive cor-
relation, 0 means no correlation, and −1 means totally negative
correlation. In measuring the linear relationship between two
spectral vectors, negative SMC values generally are discarded
[35]. In this case, in order to simplify the computation complex-
ity, negative SMC values are replaced by 0.01 as the similarity
percentage of two spectral vectors due to their apparent spectral
dissimilarity.

D. Similarity-Enhanced coMCRF

At a regional scale (e.g., a whole study area), the spectral
reflectance values of two pixels located distantly may be dis-
similar even though they belong to the same class (see Fig. 5).
This is one reason why traditional spectral-based classifiers
cannot perform well when they are applied to some complex
situations. Spatial statistical models have the capability to in-
corporate spatial correlation information into classification.
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Fig. 5. Illustrating the spectral similarity of pixels of the same land cover class
at a regional scale and at a local scale, calculated using the integrated constrain-
ing factor given in (7). (a) Two marked built-up areas A and B. (b) Histogram
of spectral similarity between pixels within area A. (c) Histogram of spectral
similarity between pixels within area B. (d) Histogram of spectral similarity
between pixels from area A and pixels from area B. For each histogram, 500
pairs of pixels were selected randomly for calculating their similarity values.
The spectral reflectance values of pixels in area A and those in area B tend to be
dissimilar even though they belong to the same class, but the spectral reflectance
values of pixels within area A or within area B tend to be similar.

However, due to the impact of spatial data within a usually circu-
lar neighborhood, geostatistical models tend to have the smooth-
ing effect that usually ignores or removes the geometric features
of classes (e.g., narrow linear features, regular linear/curvilinear
boundaries) while eliminating the noise and some details in the
classified images. In order to reduce the geometric feature loss
caused by the smoothing effect, a spectral similarity-based con-
straining factor is added to modify the coMCRF model for land
cover postclassification.

The constraining factor is based on the following understand-
ing: At a local scale (e.g., a neighborhood area or the area of
a land cover object), the spectral reflectance values of two pix-
els tend to be similar if they belong to the same class in real
world (see Fig. 5), but they tend to be very different if they
belong to different classes in real world. Thus, when a transition
probability for a neighborhood involves two different classes
(i.e., cross transition), the constraining factor is assigned to 1.0;
but when a transition probability involves the same class (i.e.,
autotransition), the constraining factor is applied to update the
transition probability in estimating the local probability distri-
bution. By this way, the contribution of the spectrally similar
nearest data is enhanced and the contribution of the spectrally
dissimilar nearest data is reduced.

For example, in Fig. 6, four nearest data (A, B, C, and D) are
used to estimate the class of the label-uninformed pixel H. Due
to the sparsity of data points in the area, there is no data point lo-
cated on the island. Because three of the four nearest informed
pixels belong to the waterbody class, the uninformed pixel is
more likely reclassified as waterbody in the coMCRF model.
However, after the spectral similarity-based constraining factor
is applied, the transition probabilities involving the three water-

Fig. 6. Illustrating how the spectral similarity-based constraining factor helps
us to estimate the class of an uninformed pixel (H) on an island using the
four nearest pixel data–A, B, C, and D (note that the co-located datum of the
preclassified image is not shown) and the spectral values of the original image at
the five pixels. (a) Four nearest data (A, B, C, and D) and the original false color
image (background) for estimating the class of the label-uninformed pixel H. (b)
Because three of the four nearest informed pixels belong to the waterbody class,
the uninformed pixel is more likely reclassified as waterbody in the coMCRF
model. (c) After the spectral similarity-based constraining factor is applied,
the estimated probability of pixel H to be waterbody becomes very low, and,
consequently, pixel H has much more possibility to be reclassified as other
classes such as woodland in postclassification.

body pixels in the SS-coMCRF model have to be multiplied by a
very small factor value when estimating the probability of pixel
H to be waterbody, because the spectral value of pixel H is very
different from the spectral values of the waterbody pixels B, C,
and D in the original image. Thus, the estimated probability of
pixel H to be waterbody becomes very low, and, consequently,
pixel H has much less possibility to be reclassified as water-
body and has more possibility to be reclassified as other classes
in postclassification. The spectral similarity-based constraining
factor, therefore, is helpful to capture the geometric features and
some details of land cover objects by emphasizing the spectral
similarity of pixels of the same class and the spectral dissimi-
larity of pixels of different classes within a neighborhood when
estimating an uninformed pixel using its nearest data neighbors.

The spectral similarity-based constraining factor, which com-
prises the Jaccard index given in (5) and the SCM given in (6),
is expressed as

Sil ik
=

{
1.0, il �= ik

ρil ik
(xl, yk ) · J il ik

(xl, yk ) , il = ik
(7)

where il is the land cover class of pixel l; ρil ik
and J il ik

are the
SCM and the Jaccard index of the spectral vectors (i.e., spectral
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values of different bands) of pixel l and pixel k, respectively (xl

and yk are spectral vectors of pixel l and pixel k, respectively).
With incorporation of the constraining factor, the similarity-
enhanced coMCRF (i.e., SS-coMCRF) model is consequently
given as

p [i0 (u0) |i1 (u1) , . . . , i4 (u4) ; r0 (u0);Spectra]

=
qi0 r0 pi1 i0 (h10) Si1 i0

∏4
g=2 pi0 ig

(h0g ) Si0 ig

∑n
f0 =1 [qf0 r0 pi1 f0 (h10) Si1 f0

∏4
g=2 pf0 ig

(h0g ) Sf0 ig
]
.

(8)

III. DATA AND EXPERIMENTS

A. Image Data

One study area is located in Wuhan, China. A medium-
resolution (Landsat 8 OLI) image for Wuhan city, acquired on
September 17, 2013, was used in this study (downloaded using
USGS EarthExplorer from www.earthexplorer.usgs.gov). There
are total 11 bands in the Landsat 8 OLI imagery, including all of
the bands (blue, green, red, near infrared, short-wave infrared 1,
and short-wave infrared 2) from previous Landsat missions other
than some new ones. New band 1 (coastal aerosol) is designed
for coastal and aerosol studies and new band 9 (cirrus) is de-
signed for cirrus cloud detection [52]. Band 8 is panchromatic
with a resolution of 15 m. Bands 10 and 11 (thermal infrared)
are for surface temperature detection with a resolution of 100
meters. Therefore, six spectral bands (band 2 to band 7) of the
image were stacked for preclassification. A scene of 1000 ×
1000 pixels with a spatial resolution of 30 m, which covers
the northeastern part of Wuhan with an area of 90 000 ha, was
clipped from the image as the study area (see Fig. 7(a)). This
study area has a relatively heterogeneous and complex land-
scape, which is composed of urban areas, suburb areas, agri-
cultural lands, rivers, hills, woodlands, and many water bodies
(lakes and ponds), with rugged topography. For this study, five
major land cover classes were mapped in the study area, namely
built-up area (C1), farmland (C2), woodland (C3), waterbody
(C4), and bare land (C5).

The other study area is located in Shenzhen, China. A scene
(see Fig. 7(b)) of 1134 × 1169 pixels with a spatial resolution of
0.6 m, extracted from a Quickbird satellite image, acquired on
April 26, 2012, was used. There are four channels in the Quick-
bird satellite imagery, including blue (450–520 nm), green (520–
600 nm), red (630–690 nm), and near-IR (760–890 nm). The
image used in this case study was downloaded under the Ortho
Ready Standard (i.e., four-band pan-sharpened) from Digital-
Globe (www.digitalglobe.com). This scene is mostly located in
the urban area of Shenzhen. Therefore, five land cover classes,
including impervious surface (T1), trees/shrubs (T2), grass/lawn
(T3), waterbody (T4), and sand/soil (T5) were considered for
this case study.

B. Expert-Interpreted Data

Preclassification data and expert interpreted data are two of
the needed data sets for performing postclassification using

Fig. 7. Study areas for the two case studies. (a) Landsat 8 OLI true color
image (R: red, G: green, B: blue) for the study area in Wuhan, China, acquired
on September 17, 2013, with a pixel size of 30 m × 30 m. The coordinates
(latitude, longitude) of the upper left corner are (30°45′04′′N, 114°22′13′′E).
(b) QuickBird true color image (R: red, G: green, B: blue) for the study area in
Shenzhen, China, acquired on April 26, 2012, with a pixel size of 0.6 m× 0.6 m.
The coordinates of the upper left corner are (22°32′27.40′′N, 114°5′47.23′′E).

coMCRF and SS-coMCRF. In this experiment, to test the
proposed SS-coMCRF model, expert-interpreted data were
discerned for each study area by expert judgment based on
professional insight and integrative information from multi-
ple sources (high-resolution images and other reliable reference
data, such as Bing maps and Google Earth historical images).

For the study area in Wuhan, a relatively dense dataset (3215
sample points, 0.32% of the total image pixels) and a relatively
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Fig. 8. Expert-interpreted land cover sample datasets for the study areas in
Wuhan and Shenzhen. (a) and (b) Dense dataset and sparse dataset for the Wuhan
study area. (c) and (d) Dense dataset and sparse dataset for the Shenzhen study
area.

TABLE I
QUANTITIES OF EXPERT-INTERPRETED SAMPLE DATASETS, TEST DATA, AND

TRAINING DATA FOR THE TWO CASE STUDIES

Case Class Expect-interpreted sample
data (pixel)

Test data
(pixel)

Training
data (pixel)

Dense Medium

Wuhan C1 1114 557 280 470
C2 997 498 250 331
C3 142 72 35 88
C4 889 444 222 333
C5 73 36 19 60
Total 3215 1607 806 1282

Shenzhen T1 1748 874 438 1380
T2 738 368 184 919
T3 217 109 54 331
T4 90 45 23 157
T5 23 12 5 112
Total 2816 1408 704 2899

sparse dataset (1607 sample points, 0.16% of the total image
pixels), all expert-interpreted from multiple sources, were used
as hard conditioning data and for estimation of transiograms and
cross-field transition probability matrix used in cosimulations
(see Fig. 8(a) and (b)). For the study area in Shenzhen, a rela-
tively dense dataset (2816 sample points, 0.21% of the total im-
age pixels) and a relatively sparse dataset (1408 sample points,
0.11% of the total image pixels) were interpreted for the same
purposes (see Fig. 8(c) and (d)). Cosimulations were conse-
quently conducted on corresponding expert-interpreted sample
datasets with transiogram models, cross-field transition prob-
ability matrix, and preclassification data for each case study.
In addition, the original image for preclassification is needed
by SS-coMCRF for providing pixel spectral data for similarity
measure computation in each postclassification.

Fig. 9. Two subsets of transiogram models estimated from the expert-
interpreted dense sample data set for the Wuhan case study. Class 1 is built-up
area, class 2 is farmland, class 3 is woodland, class 4 is waterbody, and class 5
is bare land. P (1–4) denotes the transition probability from built-up area to
waterbody. Lag distance is the separate distance between a pair of data points.

Specific quantities of expert-interpreted sample data, test data,
and training data of each land cover class for the two study areas
are shown in Table I. The test data are also expert-interpreted
data from multiple sources, but they were used only for val-
idating the preclassification and postclassification results. The
training data are different, because for each study area they were
selected only from the corresponding original image so that they
may reflect the image’s spectral characteristics and they were
used only for preclassification of land cover classes from the
original image.

C. Parameter Estimation

Besides expert-interpreted sample data and preclassified im-
age data, two sets of parameter data—a set of transiogram mod-
els and a cross-field transition probability matrix are required in
each coMCRF [32]. Transiogram models represent the spatial
auto and cross correlations of classes in the categorical field to be
simulated and can be inferred from experimental transiograms
directly estimated from sample data [45]. Considering that the
expert-interpreted sample data are usually sufficient to generate
reliable experimental transiograms, a simple linear interpolation
method [53] was used in this study to get transiogram models
from experimental transiograms (see Fig. 9 for two subsects
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TABLE II
CROSS-FIELD TRANSITION PROBABILITY MATRIX FROM CLASSES OF THE

EXPERT-INTERPRETED DENSE SAMPLE DATASET TO CLASSES OF THE

PRECLASSIFIED DATA BY THE NN CLASSIFIER FOR THE WUHAN CASE STUDY

Cross-field transition probability

Class Preclassified image

C1 C2 C3 C4 C5

Expert-interpreted dataset C1 0.864 0.074 0.015 0.012 0.035
C2 0.186 0.586 0.200 0.012 0.017
C3 0.000 0.063 0.937 0.000 0.000
C4 0.053 0.061 0.025 0.862 0.000
C5 0.082 0.082 0.000 0.000 0.836

of transiogram models for the Wuhan study area). A cross-field
transition probability matrix represents the correlations between
classes of the categorical field to be simulated and the classes
of a preclassified image, and can be simply estimated using the
class transition frequencies from the sample dataset to their cor-
responding colocated data in the preclassified image [32] (see
Table II for the cross-field transition probability matrix for the
Wuhan study area).

The NN and SVM classifiers were used, respectively, to pre-
classify the selected remotely sensed images to obtain preclas-
sified image datasets, which served as the covariate datasets in
the coMCRF model and the SS-coMCRF model. A length of
50 pixels was used as the quadrantal neighborhood search ra-
dius, because for the sample datasets used in this study such a
search radius can basically meet the requirement for finding a
nearest datum in each quadrant of the neighborhood search area.
Hundered simulated realizations were generated for each sim-
ulation, and an optimal classification map was further obtained
based on the maximum probabilities estimated from each set of
simulated realizations. The accuracy of each optimal classifi-
cation map was calculated using the corresponding test sample
dataset.

IV. RESULTS AND DISCUSSIONS

A. Classification Accuracy

Table II shows the estimated cross-field transition probability
matrix for the NN preclassification and the expert-interpreted
dense sample dataset for the Wuhan case study, which indicates
that farmland was not well classified in the preclassification be-
cause 20% of those pixel locations that were interpreted as farm-
land by experts based on multiple available data sources were
misclassified into woodland and 18.6% of them were misclassi-
fied into built-up area in preclassification mainly due to spectra
confusion. This caused the low producer accuracy (57%) of
farmland and the extremely low user accuracy (30%) of wood-
land in the preclassification map (see Table III). It is this kind of
misclassifications that caused low producer accuracies of some
classes, and, consequently, low user accuracies of some other
related classes in preclassifications.

To evaluate the performance of the SS-coMCRF model,
the accuracies of all preclassification maps and corresponding

postclassification maps were calculated, as given in Table III for
the Wuhan study area and in Table IV for the Shenzhen study
area. The land cover postclassification maps by coMCRF and
SS-coMCRF made obvious improvement in overall accuracy
(OA) and Kappa coefficient (KC) over the corresponding pre-
classification maps by NN and SVM in all cosimulation cases,
especially for the very high spatial resolution image for the
Shenzhen case study.

For the Wuhan study area, SVM classifier generated higher
preclassification OA and KC than NN classifier did; conse-
quently, postclassifications by coMCRF and SS-coMCRF made
less improvement over the SVM preclassification map than over
the NN preclassification map (see Table III). Postclassification
maps with dense sample datasets have apparently higher OAs
and KCs than those with sparse datasets because dense sam-
ple datasets bring more accurate information into postclassi-
fications. Comparing the postclassification maps generated by
coMCRF and those generated by SS-coMCRF indicates that the
two models performed similarly, with the latter being slightly
better than the former (increasing OA by 0.0% to 1.5% and KC
by 0.001 to 0.022). This means that the contribution of the spec-
tral similarity measures to the overall postclassification accuracy
is trivial. This is expected, because the use of spectral similar-
ity measures in SS-coMCRF does not bring extra information
for OA into postclassification—its purpose is to emphasize the
contribution of the neighborhood data that have spectral values
similar to that of the uninformed pixel being estimated while
weakening the otherwise so as to reduce the smoothing effect
of the coMCRF model.

For the Shenzhen case study, SVM classifier still performed
better than NN classifier in preclassification; consequently, post-
classification operations made more improvement over the NN
preclassification maps in OA and KC than over the SVM pre-
classification maps (see Table IV). Similarly, postclassification
maps with dense sample datasets have higher OAs and KCs
than those with sparse datasets. However, comparing the post-
classification maps generated by coMCRF and those generated
by SS-coMCRF shows that for the very high-resolution mage,
SS-coMCRF made slightly lower improvement than coMCRF
did (decreasing OA by 0.7% to 2.4% and KC by 0.012 to 0.041).
This means that the contribution of the spectral similarity mea-
sures to the overall postclassification accuracy can be negative
sometimes, but the negative effect is still trivial.

For specific land cover classes, both coMCRF and SS-
coMCRF postclassifications largely increased the very low pro-
ducer or user accuracies of preclassified land cover classes (e.g.,
the producer accuracy of farmland and the user accuracies of
woodland and bare land for the Wuhan case study with NN pre-
classifier; the producer accuracy of grass/lawn and the user accu-
racies of waterbody and sand/soil for the Shenzhen case study),
while sometimes they reduced (often slightly) the high pro-
ducer or user accuracies of some preclassified classes, especially
when sample data are relatively sparse. Although some classes
obtained relatively lower producer or user accuracies in post-
classifications than they did in corresponding preclassifications,
the negative effects are much less obvious in comparison with
the positive effects achieved by postclassifications. In general,
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TABLE III
ACCURACIES OF POSTCLASSIFICATION MAPS FOR THE WUHAN STUDY AREA BASED ON DIFFERENT EXPERT-INTERPRETED SAMPLE DATASETS AND THE

PRECLASSIFIED IMAGE DATA BY NN AND SVM CLASSIFIERS

Producer’s Accuracy (%) User’s Accuracy (%)

Method Expert interpreted dataset OA (%) KC Class

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

NN 76.6 0.678 88 57 89 83 79 81 79 30 96 48

NN + coMCRF Dense Value 86.4 0.807 81 90 94 88 89 92 74 85 97 94
Improvement 9.8 0.128 −7 33 6 5 11 11 −4 55 0 46

Sparse Value 84.0 0.773 80 89 83 86 58 90 72 83 96 69
Improvement 7.4 0.094 −8 32 −6 3 −21 9 −7 53 0 20

NN + SS-coMCRF Dense Value 86.6 0.811 80 94 94 86 89 94 75 80 97 85
Improvement 10.0 0.132 −8 37 6 3 11 13 −4 50 1 37

Sparse Value 84.0 0.773 80 92 83 80 89 91 72 74 98 81
Improvement 7.4 0.095 −7 35 −6 −3 11 9 −7 44 2 33

SVM 79.8 0.714 65 93 86 82 79 94 62 83 98 88

SVM + coMCRF Dense Value 84.5 0.781 78 83 91 94 84 90 75 80 92 80
Improvement 4.7 0.067 12 −10 6 12 5 −4 12 −3 −7 −8

Sparse Value 82.0 0.745 76 81 89 91 58 88 73 84 88 69
Improvement 2.2 0.031 11 −12 3 9 −21 −7 10 0 −10 −19

SVM + SS-coMCRF Dense Value 85.0 0.788 75 91 91 91 84 93 72 80 98 80
Improvement 5.2 0.074 9 −2 6 9 5 −1 9 −3 0 −8

Sparse Value 83.5 0.766 73 92 86 88 68 92 69 83 98 72
Improvement 3.7 0.053 8 −1 0 6 −11 −2 7 0 0 −16

TABLE IV
ACCURACIES OF POSTCLASSIFICATION MAPS FOR THE SHENZHEN STUDY AREA BASED ON DIFFERENT EXPERT-INTERPRETED SAMPLE DATASETS AND THE

PRECLASSIFIED IMAGE DATA BY NN AND SVM CLASSIFIERS

Producer’s Accuracy (%) User’s Accuracy (%)

Method Expert interpreted data set OA (%) KC Class

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

NN 79.8 0.661 83 83 39 96 60 99 78 68 24 15

NN + coMCRF Dense Value 96.2 0.929 97 95 91 100 80 99 94 79 100 100
Improvement 16.3 0.268 14 12 52 4 20 0 16 11 76 85

Sparse Value 94.7 0.902 97 93 81 91 80 98 92 80 100 80
Improvement 14.9 0.241 14 11 43 -4 20 -1 14 12 76 65

NN + SS-coMCRF Dense Value 93.8 0.888 93 96 89 100 80 100 93 77 100 22
Improvement 13.9 0.227 10 13 50 4 20 0 15 10 76 7

Sparse Value 92.6 0.868 93 96 81 96 80 99 91 79 100 17
Improvement 12.8 0.207 10 13 43 0 20 0 13 11 76 2

SVM 84.2 0.718 91 83 39 87 60 95 84 72 30 30

SVM + coMCRF Dense Value 95.3 0.913 98 91 85 96 80 98 94 79 100 100
Improvement 11.1 0.195 8 9 46 9 20 2 11 7 70 70

Sparse Value 93.3 0.874 97 92 74 70 80 95 92 78 100 100
Improvement 9.1 0.156 7 10 35 -17 20 0 8 6 70 70

SVM + SS-coMCRF Dense Value 94.6 0.901 96 93 89 96 80 99 91 79 100 57
Improvement 10.4 0.183 5 11 50 9 20 3 8 6 70 27

Sparse Value 92.5 0.860 95 94 76 74 80 96 88 80 100 50
Improvement 8.2 0.143 4 11 37 -13 20 1 5 8 70 20

while incorporating the spectral similarity measures into the
coMCRF model for postclassification does not aim to improve
the overall classification accuracy, it also does not obviously
reduce or may even slightly improve the overall classification
accuracy.

B. Improvement in Geometric Features

Comparing all of the postclassification maps with the corre-
sponding NN and SVM preclassification maps can found that
in addition to classification accuracy improvement (i.e., some
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Fig. 10. Preclassification and postclassification results of the Landsat 8 OLI
imagery for the Wuhan study area with the NN preclassifier. (a) NN preclassifi-
cation map. (b) and (c) coMCRF postclassification maps based on the dense and
sparse expert-interpreted datasets, respectively. (d) and (e) SS-coMCRF post-
classification maps based on the dense and sparse expert-interpreted datasets,
respectively.

Fig. 11. Preclassification and postclassification results of the Landsat 8 OLI
imagery for the Wuhan study area with the SVM preclassifier. (a) SVM preclassi-
fication map. (b) and (c) coMCRF postclassification maps based on the dense and
sparse expert-interpreted datasets, respectively. (d) and (e) SS-coMCRF post-
classification maps based on the dense and sparse expert-interpreted datasets,
respectively.

misclassified pixels being corrected), coMCRF and SS-
coMCRF postclassification maps have a common characteristic,
which is essentially related to the smoothing effect of spatial sta-
tistical models. They all removed most “salt and pepper” noise
that appeared in the preclassification maps, resulting in more
continuous spatial patterns (see Figs. 10–12). This characteris-
tic is especially obvious for the classification of the medium-
resolution image for the Wuhan case study. This means that
the two models have the filtering effect to noise. From Figs. 10
and 11 (for the Wuhan case study) and Fig. 12 (for the Shen-
zhen case study, preclassified by SVM classifier), one can see

Fig. 12. Preclassification and postclassification results of the QuickBird im-
agery for the Shenzhen study area with the SVM preclassifier. (a) SVM preclassi-
fication map. (b) and (c) coMCRF postclassification maps based on the dense and
sparse expert-interpreted datasets, respectively. (d) and (e) SS-coMCRF post-
classification maps based on the dense and sparse expert-interpreted datasets,
respectively.

that lots of misclassified land cover labels (e.g., some farmlands
were misclassified as woodlands, waterbodies with plants were
misclassified as farmlands or woodlands, and boats on the river
were misclassified as built-up areas, in Figs. 10(a) and 11(a);
building shadows (mostly grass/lawn and impervious surface)
were misclassified as waterbodies in Fig. 12(a)) and other noise
that appear in the preclassified images were corrected in post-
classified images.

However, there are apparent differences between the postclas-
sified maps by coMCRF and those by SS-coMCRF. A typical
difference is that the SS-coMCRF postclassification maps (see
Fig. 10(d) and (e), Fig. 11(d) and (e), and Fig. 12(d) and (e))
show more linear features and more details, compared with
the coMCRF postclassification maps (see Fig. 10(b) and (c),
Fig. 11(b) and (c), and Fig. 12(b) and (c)), especially for the
classification of the medium-resolution Landsat 8 OLI image for
the Wuhan study area. It is worth to mention that relatively more
land cover details could be preserved in postclassification maps
when sample data used were sparser, although sparser sample
data generally caused lower postclassification accuracies. This
is because when conditioning sample data are sparser, the pre-
classified data play a relatively larger role in postclassification
operation, thus bringing more features of the preclassification
map into the final classification map.

To clearly demonstrate the advantage of the SS-coMCRF
model in capturing the geometric shapes of some land cover
objects, below we highlight a few of small subareas in postclas-
sified maps. Fig. 13 shows the result maps of a small area around
part of an island in Yangtze River in the Wuhan case study. In the
preclassified image (see Fig. 13(a)) by the NN classifier, many
places (mainly farmland) were mistakenly classified into wood-
land (also note that boats in the river were classified into small
built-up areas). While coMCRF corrected the misclassified
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Fig. 13. Preclassification and postclassification results of a portion of the Landsat 8 OLI image for the Wuhan study area. (a) NN preclassification map. (b) and
(c) coMCRF postclassification maps of NN preclassification, based on the dense and sparse datasets, respectively. (d) and (e) SS-coMCRF postclassification maps
of NN preclassification, based on the dense and sparse datasets, respectively. (f) SVM preclassification map. (g) and (h) coMCRF postclassification maps of SVM
preclassification, based on the dense and sparse datasets, respectively. (i) and (j) SS-coMCRF postclassification maps of SVM preclassification, based on the dense
and sparse datasets, respectively. (k) Original false color image.

Fig. 14. Preclassification and postclassification results of a portion of the Landsat 8 OLI imagery for the Wuhan study area. (a) NN preclassification. (b) and
(c) coMCRF postclassification maps of NN preclassification, based on the dense and sparse datasets, respectively. (d) and (e) SS-coMCRF postclassification maps
of NN preclassification, based on the dense and sparse datasets, respectively. (f) SVM preclassification. (g) and (h) coMCRF postclassification maps of SVM
preclassification, based on the dense and sparse datasets, respectively. (i) and (j) SS-coMCRF postclassification maps of SVM preclassification, based on the dense
and sparse datasets, respectively. (k) Original false color image.

places in postclassification maps, it did not effectively cap-
ture the shape of the island due to its strong smoothing
effect (see Fig. 13(b) and (c)). However, SS-coMCRF not only
corrected the misclassified places in postclassification maps but
also captured the geometric shapes of the island and upper river
bank with more land cover details (see Fig. 13(d) and (e)). In
the preclassified image (see Fig. 13(f)) by the SVM classifier,
farmlands were not apparently misclassified, but boats were still
misclassified as small built-up areas. While correcting the mis-
classified places, coMCRF strongly smoothed out the shape fea-
tures of the island and upper river bank in postclassifications (see
Fig. 13(g) and (h)). However, SS-coMCRF preserved the shapes
of both the island and the upper river bank while it cleaned off
the misclassified boats and other noise. In general, postclas-
sification operations corrected misclassified land cover classes
and removed noise due to the contribution of expert-interpreted
sample data and spatial correlation information, thus improving
the mapping accuracy; and the spectral similarity measures fur-
ther helped to reduce the loss of geometric features and details
of land cover objects in postclassification maps.

In the real world, spectral reflectance tends to be similar for
pixels belonging to the same class but change dramatically be-
tween pixels belonging to different classes within a local area
(see Fig. 1). Thus, incorporating spectral similarity measures
into the coMCRF model for postclassification may reduce ge-
ometric feature loss of land cover objects, as shown in Figs.
10–12, as well as figures for highlighted subareas (see Figs. 13
to 15). Fig. 14 shows the preclassification and postclassification
maps for the northeastern part of a large lake in the Wuhan
study area. It can be seen that SS-coMCRF kept the complex
lake boundary shapes and many details of terrestrial land cover
classes along lake boundaries in postclassification maps (see
Fig. 14(d), (e), (i), and (j)), while coMCRF smoothed out most of
them (see Fig. 14(b), (c), (g), and (h)). Consequently, coMCRF
seemingly overestimated the area of the lake by smoothing out
the terrestrial boundary details, regardless of the density of sam-
ple data. Of course, because the preclassification maps generated
by the NN classifier and the SVM classifier are quite different
in nonwater classes, the corresponding postclassification maps
also show some differences.
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Fig. 15. Preclassification and postclassification results of a portion of the QuickBird image for the Shenzhen study area. (a) NN preclassification. (b) and
(c) coMCRF postclassification maps of NN preclassification, based on the dense and sparse datasets, respectively. (d) and (e) SS-coMCRF postclassification maps
of NN preclassification, based on the dense and sparse datasets, respectively. (f) SVM preclassification. (g) and (h) coMCRF postclassification maps of SVM
preclassification, based on the dense and sparse datasets, respectively. (i) and (j) SS-coMCRF postclassification maps of SVM preclassification, based on the dense
and sparse datasets, respectively. (k) Original false color image.

Fig. 15 shows that the false waterbodies in preclassification
maps, which are mostly shadows on impervious surface and
grass/lawn, were corrected in postclassifications for a small sub-
area in the Shenzhen study area. Such kind of misclassifications
is very common for land cover classification in urban area from
very high-resolution images. However, comparing the postclas-
sification results from the coMCRF model and those from the
SS-coMCRF model, one can see that the latter have less smooth-
ing effects. A green stripe between the major driving road and
the side road (see Fig. 15(k)) was smoothed out by coMCRF
(see Fig. 15(b), (c), (g), and (h)) but preserved by SS-coMCRF
(see Fig. 15(d), (e), (i), and (j)) in postclassification maps. The
coMCRF model showed some tendency of overcorrecting the
impervious surface class, while the SS-coMCRF model kept
some noise as a tradeoff. The overcorrection tendency of coM-
CRF should be caused by the model’s strong smoothing effects,
which led to the local overestimation of impervious surface as
a locally dominant land cover class.

C. Discussions

While correcting misclassified pixels, postclassification op-
eration by the coMCRF model caused obvious smoothing ef-
fects in finally classified land cover maps, which not only
remove noise but also smooth out most of linear features, tiny
patches, and irregular patch boundaries, especially for medium-
resolution classification. This is a common characteristic of
spatial-dependence models. A major reason is that the local
neighborhoods they used are normally composed of the nearest
data within a circular search area that is usually much wider
than many linear features or tiny objects. The second reason
is that the postclassification maps shown above are all optimal
maps (or map portions), of which each was based on the maxi-
mum occurrence probabilities estimated from a set of simulated
realizations. Thus, the loss of geometric features of land cover
objects is unavoidable because both the neighborhood structure
and the optimization tend to remove fine features to get the gen-
eral trend [33]. The incorporation of spectral similarity measures
in postclassification helps to preserve the geometric shapes of

real land cover objects to some extent, as demonstrated above
in the postclassification maps by the SS-coMCRF model.

The filtering effect of incorporating data dependence should
be the major reason causing the removal of noise and many
small land cover patches. Because of the sparseness of expert-
interpreted sample data (accounting for only 0.32% to 0.11%
of total pixels for the dense and sparse datasets), estimation
of the local conditional probability distribution of land cover
classes at an unsampled pixel has to depend on the nearest
sample data within a relatively large search area (e.g., a search
radius of 50 pixels length) at the early simulation stage. Thus,
the filtering effect on the preclassified pixel data can be strong.
Although the smoothing effects can remove noise and increase
connectivity, they also cause negative effects—removing narrow
linear features and tiny land cover patches that may be correct.

The smoothing effect caused by optimization over a num-
ber of simulated realization maps is limited, because simulated
realizations (see Fig. 16(a)–(d)) and the corresponding optimal
classification maps (see Fig. 14(c) and (e)) have similar smooth-
ing characteristics except that the former have some extra details
(small patches). However, the occurrence probability maps of
waterbody (see Fig. 16(e) and (f)) from the postclassification
models show that SS-coMCRF generated less uncertainty than
coMCRF did at class boundaries, while the former also captured
much more land cover patch details than the latter did. This
means that incorporating spectral similarity measures into land
cover postclassification by using SS-coMCRF narrows the local-
scale uncertainty space (i.e., increases the local-scale certainty),
and, thus, contributes obviously to the geometric accuracy of
land cover classes (e.g., waterbody), although it generally does
not increase the OA of postclassification maps. The tradeoff for
incorporating spectral similarity measures to reduce the geomet-
ric feature loss of land cover objects is that the postclassification
maps by SS-coMCRF may keep some noise and some tiny land
cover patches that may not be correctly classified. This trade-
off may be one reason why SS-coMCRF does not apparently
improve or even slightly reduce the OA of postclassification
maps.
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Fig. 16. Postclassification results of a portion of the Landsat 8 OLI image
based on the NN preclassification and the sparse sample dataset for the Wuhan
study area. (a) and (b) Two simulated realizations by coMCRF. (c) and (d) Two
simulated realizations by SS-coMCRF. (e) and (f) The occurrence probability
maps of waterbody produced by coMCRF and SS-coMCRF, respectively.

V. CONCLUSION

Two mutually complementary spatial similarity measures, the
Jaccard index and the SCM, were combined as an integrated con-
straining factor and incorporated into the coMCRF model for
land cover postclassification, in order to reduce the smoothing
effect, particularly the loss of geometric features (e.g., shapes
and boundaries) of land cover objects in postclassification
maps.

The case studies demonstrated that the SS-coMCRF model
reduced the smoothing effect of the existing coMCRF model
and is effective in capturing more geometric shapes of land
cover objects and preserving more details (e.g., tiny patches)
in postclassification maps. Given the same expert-interpreted
sample data, the land cover postclassifications by SS-coMCRF,
and those by coMCRF both made apparent improvement in OA
over the preclassifications by NN and SVM classifiers. Although
SS-coMCRF did not show obvious advantages over coMCRF
in OA improvement in land cover postclassifications, it did a
much better job in capturing the geometric shapes of land cover
objects, especially linear stripes and boundaries of land cover
classes with distinct spectral reflectance values. This is exactly
the goal we hoped to achieve by incorporating spectral similarity
measures. The reason for the improvement in geometric features
of land cover objects should be that SS-coMCRF utilized the
spectral information more sufficiently (through incorporating
pixel spectral similarity measures calculated from the spectral
data of the original remotely sensed image) than coMCRF did. A
visible tradeoff for SS-coMCRF is that it may keep some noise
and tiny patches in postclassification maps, and the kept noise
and tiny patches may not be correctly classified. In general,
the SS-coMCRF model can be a promising method for land

cover/use postclassification, especially when geometric shapes
and linear features are emphasized.
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