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Abstract

Context Landscape metrics play an important role in

measurement, analysis, and interpretation of spatial

patterns of landscapes. There are a variety of different

landscape metrics widely used in landscape ecology.

However, existing landscape metrics are mostly non-

graphic and single-value indices, which may not be

sufficient to describe the complex spatial correlation

and interclass relationships of various landscapes. As a

transition probability diagram over the lag distance,

the transiogram, which emerged in recent years,

essentially provides a new graphic metric for measur-

ing and visualizing the auto and cross correlations of

landscape categories.

Objectives To explore the capability of the tran-

siogram for measuring spatial patterns of categorical

landscape maps and compare it with existing land-

scape metrics.

Methods Sixteen commonly-used landscape metrics

and transiograms (including auto- and cross-tran-

siograms) were estimated and compared for land

cover/use classes in four areas with different

landscapes.

Results Results show that (1) these transiograms can

provide visual information about the proportions,

aggregation levels, interclass adjacencies, and intra-

class/interclass correlation ranges of landscape

classes; (2) sills and auto-correlation ranges of tran-

siograms are correlated with the values of some

landscape metrics; and (3) the peak height ratios of

idealized transiograms can effectively represent the

juxtaposition strength of neighboring class pairs.

Conclusions The transiogram can be an effective

graphic metric for characterizing the auto-correlation

of single classes (through auto-transiograms) and the

complex interclass relationships, such as interdepen-

dency and juxtaposition, between different landscape

classes (through cross-transiograms).

Keywords Transiogram � Landscape metrics �
Transition probability � Spatial pattern � Graphic
metric � Visual information

Introduction

Landscape metrics are important for measuring,

analyzing, and interpreting spatial patterns of
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landscapes. During last several decades, a number of

landscape metrics were developed to describe and

quantify the composition and arrangement of land-

scape categories (i.e., classes). They have been widely

used in many aspects, such as biodiversity and habitat

analysis, land use/land cover change evaluation, and

landscape regulation. The most extensively studied

topics related with landscape metrics are the relation-

ships between various metrics and species richness

and their habitat preferences. For instance, Bailey

et al. (2007) found that landscape pattern is important

for bee species, and thus it can be used to predict the

diversity potential of bees. The evaluation of the

landscape changes, especially urban growth and

fragmentation, is also a main part of the exploitation

of landscape metrics. Liu et al. (2017) suggested that

landscape metrics can provide a new method to

understand the patterns and related processes of

urbanization in three dimensions. Moreover, the

analysis of landscape regulation is a new and promis-

ing area in the use of landscape metrics (Li and

Mander 2009). For example, landscape metrics were

used in evaluating the influence of landscape factors

on water quality (Shen et al. 2015) and the fire

resilience of forests (Lee et al. 2009). Landscape

metrics address the spatial composition and configu-

ration of landscapes and are important tools for

understanding, assessing, and monitoring changes in

landscape pattern, which affect underlying ecological

processes.

Landscape metrics are widely used due to easy

calculation with easily obtained land cover data, from

maps and remotely sensed images, and ready-to-use

software such as FRAGSTATS, which needs a few or

no parameterizations. There are several software

packages available for calculating a variety of land-

scape metrics, such as FRAGSTATS (McGarigal et al.

2002), Patch Analyst in ArcGIS (Rempel et al. 2008),

and Pattern in IDRISI (Eastman 2012). For example,

FRAGSTATS provided around 43 landscape metrics

at class level. However, these landscape metrics are all

non-graphic and single-value indices, which may not

be sufficient to describe the complex spatial patterns of

various landscapes. In fact, as Li et al. (2005) stated,

no index can fully describe the spatial pattern of a

landscape. There are some limitations with the widely-

used landscape metrics, which include some well-

known limitations and the less-recognized correlation

limitations. These well-known limitations are the

sensitivity to data resolution (Wickham and Rhtters

1995), the sensitivity to study area extent (Turner et al.

1989), and the huge influence of data inaccuracy on

the values of landscape metrics (Shao and Wu 2008).

The correlation limitations are the disconnections

between landscape metrics and ecological patterns or

processes. For example, the relationships between

some metrics and ecological processes may be con-

founded, due to the interactions among ecological

processes and other attributes of the landscape (Hargis

et al. 1999), and also due to the difficulties of

quantifying the unique effects of habitat configuration

on biotic responses caused by the correlation of

configuration metrics and habitat abundance (Wang

and Cumming 2011). Most of these limitations can be

addressed, mitigated, or put in perspective, through

careful data manipulation, result analysis and inter-

pretation, and combination with other methods.

However, the interpretation of landscape metrics

still remains difficult (Li and Wu 2004). Since

landscape metrics have been linked to ecological

patterns or processes, a primary concern is how easily

they can be interpreted by a range of non-scientists,

including politicians, land managers and, in some

cases, the public, who are responsible for conservation

planning and land management (Kupfer 2012). The

evolution from solely indicator-based measures to

methods that incorporate visualization techniques is

an approach to make landscape analyses more inter-

pretable (Kupfer 2012). Besides the requirement of

improving interpretability, the need of measuring the

new aspects of landscape pattern is also an urgent task.

Some efforts have been made, for instance, the

Morphological Spatial Pattern Analysis (MSPA) can

describe the geometry and connectivity of image

components and further classify and map individual

pixels into core, patch, connector, perforation, and

edge categories (Vogt et al. 2007, 2009; Soille and

Vogt 2009). MSPA is available in the free software

GuidosToolbox, which also contains some other

spatial pattern analysis tools (Vogt and Riitters

2017). Sofia et al. (2014) proposed a new metric—

the Slope Local Length of Auto-Correlation (SLLAC),

which comes from the local analysis of slope self-

similarity, for specifically measuring spatial hetero-

geneity of terraced landscapes. However, there is still

a need for effective landscape metrics in measuring

and interpreting landscape patterns in some aspects,

particularly with visualization and convenience.
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The transiogram concept was first introduced by Li

(2007a) based on pioneer studies in geosciences

(Schwarzacher 1969; Carle and Fogg 1996; Luo

1996; Carle and Fogg 1997; Ritzi 2000) and the

variogram concept, mainly for providing transition

probability parameters to the Markov chain geostatis-

tical approach (Li 2007b; Li et al. 2015b; Yu et al.

2019). Theoretically, it is defined as a transition

probability-lag function, but visually it is a transition

probability diagram over the lag distance. The tran-

siogram was first developed as a graphic correlation

measure for categorical data to replace the transition

probability matrix (TPM) of conventional Markov

chain theory due to its capability of incorporating the

complex spatial heterogeneity of categorical spatial

variables into landscape simulation. However, it also

can work as an independent metric to measure the

spatial variability of categorical spatial variables, such

as soil types and land cover classes. Li (2007a)

analyzed the shape features of transiograms estimated

from sample data of soil types and showed that the

transiogram is an effective method for characterizing

the intra-class auto-correlations of individual classes

(through auto-transiograms) and the complex inter-

class relationships, such as interdependency, juxtapo-

sition and directional asymmetry, between different

classes (through cross-transiograms). Our study indi-

cates that the transiogram may work as a graphic and

composite metric to measure the spatial patterns of

landscape categorical maps. Compared with the

traditional landscape metrics, transiograms represent

the spatial patterns of landscape categories through

graphic diagrams, which achieved the visualization of

information. Nevertheless, the transiogram may also

have some limitations on representing the spatial

variability of landscapes, which need to be

complemented.

In this paper, we use actual land cover data to

explore the capability of the transiogram as a

landscape metric through comparing it with other

popularly-used landscape metrics. We firstly calcu-

lated the transiograms (both auto-transiograms and

cross-transiograms) and sixteen commonly-used land-

scape metrics from the datasets of four corresponding

study areas, and then we interpreted the results of

transiograms and compared them with the values of

those commonly-used landscape metrics. Through the

comparison, we aim to explore the following ques-

tions: (1) What are the characteristics of the landscape

transiograms and their relationships with traditional

landscape metrics? (2) Do transiograms provide

unique information compared with other landscape

metrics? (3) What are the limitations of transiograms

as a landscape metric? And finally, 4) can the

transiogram work as an effective metric for measuring

landscape characteristics?

Materials and methods

Data

We used actual land cover data to calculate the

landscape metrics and transiograms. In order to test

the general performance of transiograms, we ran-

domly selected several pieces of a post-processed

Connecticut land use/cover map for 2010. Six land

use/cover types were considered for landscapes:

developed land, crop/grass land, forest land, water-

body, wetland, and barren land. Four small land

use/cover maps (clipped pieces) that contain all the

considered patch types were finally used for this study

(Fig. 1). These maps have a 30 m 9 30 m pixel

resolution and totally 240 9 200 pixels. The small

example areas were used for linking the computed

results, both transiograms and landscape metrics, with

the visual interpretation of example images by human

eyes, such as the class proportions and aggregation

levels of different classes. Large images are too

complex to interpret by human eyes. In addition,

because the transiograms are estimated globally, using

large images that contain different local patterns (i.e.,

different patterns in different subareas) may conceal

the local features of landscape patterns that can be

reflected on transiograms and visually interpreted. The

main patch types (i.e., land use/cover classes) are

forest land and developed land, due to the character-

istics of the Connecticut land cover/use situation—

Connecticut is the fourth most densely populated state

in United States and around 50% of its surface is

covered by forest. The minor class, barren land, was

ignored in the analysis due to its low proportion (less

than 3% for all four maps) and the unreliability of

related metric values caused by data insufficiency (see

Supplement IV for more information).
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Methods

Transiograms

A transiogram is a diagram formed by the values of the

transition probabilities of one categorical field from

one state (i.e., landscape class here) to itself or another

state with increasing lag values from zero to a further

distance. Theoretically, it is expressed as a transition

probability-lag function:

pijðhÞ ¼ Pr½z xþ hð Þ ¼ jjz xð Þ ¼ i�

where pij(h) is the transition probability function of the

categorical random variable Z from state i at location

x to state j at location x ? h over the lag distance h (Li

2007a). Its value ranges from 0 to 1. The lag h can be a

distance with an exact unit (e.g., feet or meters) or the

number of spatial steps (i.e., the number of pixels or

grid cells), which can be directional. Under the

second-order spatial stationary assumption, the func-

tion is only dependent on the lag h, rather than on any

specific location x; therefore, transiograms can be

estimated from sample data pairs in a space. pii(h) de-

notes an auto-transiogram, representing the self-de-

pendence of class i, and pij hð Þ i 6¼ jð Þ denotes a cross-

Fig. 1 The land use/cover maps of the selected study areas
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transiogram, describing the cross-dependence of class

j on class i, with i defined as tail class and j defined as

head class. Cross transition probabilities are asym-

metric, which means pij 6¼ pji for i 6¼ j; but if tran-

siograms are estimated omni-directionally or bi-

directionally, we have pij � pi ¼ pij � pj. Tran-

siograms have the following basic properties: (1) they

are non-negative; (2) at any specific lag, values of

transiograms with the same tail class sum to 1; (3) for

mutually exclusive classes, transiograms should not

have nuggets, that is, we have piið0Þ ¼ 1 for auto-

transiograms and pijð0Þ ¼ 0 or cross-transiograms of

exclusive classes.

Normally, transiograms have two main parameters:

sill and correlation range. Usually, a transiogram

gradually approaches a stable value with increasing

lag distance. The stable or approximately stable value

is called sill. This means that auto-transiograms start

from the origin point (0, 1.0) with a transition

probability value of 1.0 and gradually decrease to

their sills, while cross-transiograms start from the

origin point (0, 0) and gradually increase to their sills.

Sometimes, a cross-transiogram may have a peak or a

series of peaks and troughs before gradually reaching

their sills, which reflects the neighboring or alternate

occurrence characteristics of the two involved classes.

Theoretically, the value of the sill of a transiogram is

equal to the proportion of the corresponding head class

in the data used for estimating the transiogram (or in

the study area if the data are representative of the study

area). However, for a small research area, there may be

some deviation between transiogram sills and corre-

sponding class proportions due to the boundary effect

and the fact that some transiograms may end before

reaching their sills at longer lag distances (Li 2007a).

Because boundary cells have fewer transitions relative

to internal cells, the boundary effect means a class may

have statistically biased smaller transition probabili-

ties if it has a higher proportion to occur at boundaries

of a research area. This effect is not apparent for

relatively large research areas. The lag distance where

the sill is stably approached is called correlation

range. For auto-transiograms, it is the distance of self-

dependence of the corresponding class, and for cross-

transiograms, it is the distance of the interdependence

of the two classes.

The transiograms directly estimated from real data

are called real-data transiograms, including exhaustive

transiograms and experimental transiograms, which

reflect the spatial variation characteristics of the real

data. Exhaustive transiograms are a special case of

experimental transiograms, referring to those tran-

siograms directly estimated from maps or images

where data are exhaustive. Experimental transiograms

refer to those directly estimated from sparsely sampled

data. Free software, TGRAM, for experimental tran-

siogram estimation and modelling was described in

Yu et al. (2019). More interestingly, transiograms also

can be directly calculated from a one-step TPM

estimated from real data or expert knowledge (when

no real data is available) (Schwarzacher 1969; Luo

1996; Li 2007a). Because this kind of transiograms are

based on the first-order stationary Markovian assump-

tion and have very smooth curves, they are called

idealized transiograms (Li 2007a; Li et al. 2012).

Idealized transiograms can capture the basic correla-

tion characteristics of classes, and if available, their

properties are significant in interpreting and modeling

experimental transiograms. Therefore, even though

they are not an exact reflection of real data or

phenomena and are oversimple to some extent,

understanding idealized transiograms is still neces-

sary. In this paper, both idealized transiograms and

experimental transiograms for the selected study areas

are calculated.

The estimator for real data transiograms is given as

p̂ikðhÞ ¼
FikðhÞPn
j¼1 FijðhÞ

;

where FikðhÞ represents the frequency of transitions

from class i to class k among data pairs with the spatial

lag h, and n is the total number of classes in a

categorical spatial data set. When estimating the

transition frequencies from sample data for experi-

mental transiograms, the lag h considered is actually a

lag interval [h-Dh/2, h ? Dh/2] around h, due to the

sparseness of sample data pairs (Li 2007a). Here the

Dh is called lag tolerance width. That is, all data pairs

within the lag interval are counted as the data pairs at

lag h. However, such a lag tolerance width also can be

used to exhaustive transiogram estimation from

exhaustive data to smooth the estimated transiogram

curves.

For estimating experimental transiograms from

sample data sets of landscape classes, one needs to

first convert the sample data file into a required format
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accepted by the software (e.g., Shapefile format is used

in the TGRAM software). Inexperienced users may

need several trials to find a suitable tolerance width so

that the estimated experimental transiograms are

relatively stable in their shape features. Another

parameter is the maximum lag, which may be set to

be equal to or smaller than the diagonal length of the

study area if the study area is small. This parameter is

not a concern when the sample data set is not very

large. But when the sample data set is large, a very

large maximum lag may increase the computation

time a lot, while it is unnecessary to obtain experi-

mental transiograms with long lags much longer than

correlation ranges. Under this situation, one may set

the maximum lag to the desired distance or the

distance of the perceived longest correlation range. It

should be noted that when the study area is too small or

the sample data is too sparse, experimental tran-

siograms may quickly go down or be out of order after

or even before reaching their correlation ranges due to

the lack of data pairs at longer lags. Experimental

transiograms of extremely minor classes often tend to

strongly fluctuate due to the lack of data pairs at many

lags.

Landscape Metrics

Landscape metrics can be grouped into patch, class,

and landscape levels. Some metrics are inherently

redundant if they are representing the same informa-

tion. More information about the interdependency of

landscape metrics can be seen in Riitters et al. (1995).

Users can choose among them based on the preference

and different applications. We considered the com-

monly-used metrics in class-level after eliminating

those that were inherently redundant (McGarigal

2002). In this paper, we calculated sixteen conven-

tional class-level metrics for each landscape using the

computer program FRAGSTATS 3.2 (McGarigal

et al. 2002) (Table 1). The calculated results are all

provided in Supplement I. These sixteen class-level

metrics can be loosely grouped into five groups: area

and edge metrics, shape metrics, contrast metrics,

aggregation metrics, and subdivision metrics, accord-

ing to the aspects of landscape patterns that they

describe. In brief, area and edge metrics are the

metrics that measure the size of patches and the

amount of edge created by these patches. Shape

metrics describe the geometric complexity and/or

compactness of patch shapes. Contrast metrics deal

with the magnitude of difference along patch edges

between adjacent patch types. Aggregation metrics

represent the aggregation level of patch types. Subdi-

vision metrics are closely allied to the aggregation

metrics and refer to the degree of subdivision of the

classes.

Table 1 The acronyms and

names of the selected 16

class-level metrics

Group Acronym Name

Area and edge metrics PLAND Proportion of landscape

LPI Largest patch index

ED Edge density

AREA_AM Area-weighted mean patch area

Shape metrics SHAPE_AM Area-weighted mean shape index

FRAC_AM Area-weighted mean fractal dimension

Contrast metrics CWED Contrast weighted edge density

TECI Total edge contrast index

Aggregation metrics CLUMPY Clumpiness index

PLADJ Proportion of like adjacencies

IJI Interspersion/juxtaposition index

COHESION Patch cohesion

AI Aggregation index

nLSI Normalized landscape shape index

Subdivision metrics PD Patch density

SPLIT Splitting index
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Transiogram Estimation

Idealized transiograms in this paper were calculated

from one-step TPMs estimated from exhausted data of

the four land cover maps. For example, the one-step

TPM P(1) of study area A is:

where each entry of P(1) represents a transition

probability of one class (for self-transition) or a pair

of class (for cross-transition) over one fixed spatial

step (one pixel length, that is, 30 m at here) in study

area A. Under the first-order stationary Markovian

assumption, the n-step TPM P(n) can be calculated

from the one-step TPM P(n) through self-multiplica-

tion, that is, we have

PðnÞ ¼ Pð1Þ � ½Pð1Þ�n�1 ¼ ½Pð1Þ�n

As n increases, the calculated multi-step transition

probabilities form a series of continuous diagrams

(Schwarzacher 1969; Luo 1996; Li 2007a), which are

the idealized transiograms of study area A.

Experimental transiograms in this paper are omni-

directional and calculated based on randomly selected

sample data (2000 sample pixels, about 4% of the total

pixels) from each of the four land cover maps. A

tolerance width of 4 pixel lengths is used to make the

transiograms stable in their shapes. The class propor-

tions of each area and samples for the four study areas

are provided in Table 2. Experimental transiograms

are usually more feasible than exhaustive tran-

siograms. First, although sample data account for

only a small portion of the whole study area, they still

represent the major spatial variability information and

the approximate class proportions if not extremely

sparse, while leaving sufficient space for possible class

boundary uncertainty (i.e., avoiding taking crispy

patch boundaries into account in transiogram estima-

tion). Second, the land cover data may not be highly

accurate and, in some cases, the exhaustive data is not

available. Hence, experimental transiograms are more

flexible and evenmay reduce the effect of noise. Third,

for a relatively large study area with a large number of

pixels, calculating experimental transiograms from

sample data can save the computation time (for more

information about computation time, see Supplement

V), while exhaustive transiograms are actually similar

to experimental transiograms as long as the sample

data set is representative. All experimental tran-

siograms estimated from the sample data sets of the

Table 2 Land cover/use

class proportions in the four

study areas (240 9 200

pixels for each map) and

corresponding sample data

sets (2000 pixels for each

sample data set)

Data Class proportions (%)

Developed Crop/grass Forest Waterbody Wetland Barren

A Whole area 12.92 6.04 72.72 5.86 2.12 0.34

Samples 13.16 6.23 72.55 5.52 2.24 0.30

B Whole area 31.86 6.90 41.24 13.77 4.09 2.14

Samples 31.67 6.64 42.12 12.96 4.34 2.27

C Whole area 25.45 12.87 42.17 17.20 1.69 0.62

Samples 25.90 13.97 41.18 17.11 1.44 0.40

D Whole area 21.01 20.77 45.57 5.35 6.06 1.24

Samples 21.18 20.54 45.23 5.81 5.93 1.31

Pð1Þ ¼

p11ð0:883Þ
p21ð0:067Þ

p12ð0:032Þ
p22ð0:845Þ

p13ð0:075Þ
p23ð0:080Þ

p14ð0:005Þ
p24ð0:003Þ

p15ð0:003Þ
p25ð0:003Þ

p16ð0:002Þ
p26ð0:004Þ

p31ð0:013Þ
p41ð0:013Þ

p32ð0:006Þ
p42ð0:003Þ

p33ð0:976Þ
p43ð0:009Þ

p34ð0:001Þ
p44ð0:973Þ

p35ð0:003Þ
p45ð0:003Þ

p36ð0:001Þ
p46ð0:001Þ

p51ð0:015Þ
p61ð0:065Þ

p52ð0:007Þ
p62ð0:067Þ

p53ð0:096Þ
p63ð0:087Þ

p54ð0:007Þ
p64ð0:017Þ

p55ð0:871Þ
p65ð0:018Þ

p56ð0:003Þ
p66ð0:745Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5
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four land cover maps are provided in Supplement II. In

addition, although not examined here, all exhaustive

transiograms of the four land cover maps are provided

in Supplement III for comparison.

Results

Transiograms

Auto-transiograms

Idealized transiograms for the four areas were calcu-

lated using corresponding one-step TPMs. The ideal-

ized auto-transiograms of the four areas are shown in

Fig. 2A–D. The x-axis of these transiograms is lag

distance, of which the unit is pixel length (30 m in this

study), and the y-axis is transition probability. They all

start from point (0, 1.0) and smoothly decrease to

stable values with increasing h. These idealized auto-

transiograms are approximately exponential in their

curve shapes. Idealized transiograms have stable sills

and clear correlation ranges. The experimental auto-

transiograms of the four areas are shown in Fig. 2a–d.

Compared with idealized auto-transiograms, the sills

and correlation ranges of experimental auto-tran-

siograms are blurred. These experimental auto-tran-

siograms are not smooth curves and some of them

have some fluctuations (small peaks and troughs). The

sill and auto-correlation range data of these auto-

transiograms are provided in Table 3. The sill and

auto-correlation range values (especially the range

values) of the experimental transiograms were just

approximately identified. Although the eventual sills

of most experimental transiograms do not deviate too

much from the sills of corresponding idealized tran-

siograms, their correlation ranges are obviously

bFig. 2 Idealized auto-transiograms (left column) and experi-

mental auto-transiograms (right column) (1—developed land,

2—crop/grass land, 3—forest, 4—waterbody, 5—wetland).

A and a—for Area A. B and b—for Area B. C and c—for

Area C. D and d—for Area D. Note that p(i, j) denotes pij(h) in
legends for simplicity

Table 3 The sills and

correlation ranges of

idealized and experimental

auto-transiograms for the

four cases as shown in

Fig. 2

Area Class Idealized auto-transiogram Experimental auto-transiogram

Sill Range (pixels) Sill Range (pixels)

A Developed 0.127 32 0.133 45

Crop/grass 0.069 22 0.059 20

Forest 0.707 40 0.668 85

Waterbody 0.079 80 0.016 60

Wetland 0.020 16 0.021 23

B Developed 0.309 35 0.343 75

Crop/grass 0.066 24 0.066 40

Forest 0.456 40 0.336 85

Waterbody 0.109 58 0.099 90

Wetland 0.042 24 0.043 35

C Developed 0.269 35 0.236 80

Crop/grass 0.154 25 0.145 35

Forest 0.395 25 0.415 30

Waterbody 0.169 70 0.173 90

Wetland 0.013 16 0.019 35

D Developed 0.222 20 0.227 35

Crop/grass 0.214 20 0.216 30

Forest 0.439 25 0.417 35

Waterbody 0.064 30 0.061 35

Wetland 0.050 26 0.045 40
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different. Their shapes show that they are not simply

exponential, and the real data, especially the data of

some classes (e.g., class 1, class 3 and class 4 in

Fig. 2a, b), have very different (much longer or

shorter) auto-correlation ranges or have multiple

ranges.

Cross-transiograms

Figure 3 shows some of the idealized cross-tran-

siograms and corresponding experimental cross-tran-

siograms of the four cases (for more experimental

transiograms, see Supplement II), and their sill and

correlation range values are provided in Table 4.

Idealized cross-transiograms are all smooth curves and

most of them can be modeled perfectly by exponential

functions, although some of them are not monotoni-

cally increasing, with a peak (or maximum value)

occurring before reaching their sill values. Experi-

mental cross-transiograms tend to have quite complex

shapes. While some experimental cross-transiograms

approximately follow the shapes of their correspond-

ing idealized ones (e.g., Figure 3A), some others may

deviate a lot, especially in the low lag section

(assuming the maximum lag is sufficiently long and

all experimental transiograms may reach a

stable situation).

Cross-transiograms have different shapes, based on

which we may loosely group them into three types.

The first type, which is also the most common type, is

the typical-shape cross-transiograms, whose shapes

are normally approximately exponential (e.g., the

idealized and experimental cross-transiograms p(3,2)
from area A in Fig. 3A), starting from point (0, 0) and

gradually increase to a stable value (i.e., sill) with

increasing h. The second type is those peaked-shape

cross-transiograms, which first increase and reach a

peak value at a comparatively shorter distance and

then gradually decrease to their sills (note that some

experimental cross-transiograms may first have a

relatively higher peak and then go through a series

of peaks and troughs to decrease to their sills). This

kind of cross-transiograms reflect the juxtaposition or

neighboring characteristics of two classes (Li et al.

2012). For instance, the idealized cross-transiogram

p(2,1) in Fig. 3A is an example of such kind of cross-

transiograms, which means that the two classes

(crop/grass land and developed land) frequently occur

as close neighbors in area A. The experimental cross-

transiogram p(2,1) in Fig. 3A actually has a similar

shape, but with some extra complexity—the first peak

is followed by a series of irregular fluctuations. The

third type is those cross-transiograms of class pairs

that are infrequent neighbors or non-neighbors. In this

case, the cross-transiogram between a pair of classes

normally has a low-value section first and then

gradually approach to its sill. This shape style is

uncommon but does exist. It occurs on some exper-

imental cross-transiograms sometimes, but the corre-

sponding idealized cross-transiograms tend to have a

Gaussian model shape. The experimental cross-tran-

siogram p(4,2) from area C in Fig. 3D is an example of

this kind of cross-transiograms. Here the p(4,2) (for

waterbody and cross/grass land) is relatively flat with

low values within the lag value of 10 pixels and then

gradually increase to the sill. It tells that these two

classes are infrequent neighbors, even though it is not

so obvious because the low-value section is too short.

Checking the map C in Fig. 1, we can find that

waterbodies basically do not border on the crop/grass

land class in the map. However, compared with the

typical-shape cross-transiograms, the cross-tran-

siograms of infrequent-neighbor classes have much

lower values in the low-lag section (see p(4,2) in

Fig. 3C, D).

Transition probabilities are typically asymmetric,

which means the transition probabilities from class i to

class j are different from the transition probabilities

from class j to class i at the same distance (e.g.,

Figure 3B). For example, the idealized cross-tran-

siograms between forest and waterbody in area B, are

different—the p(3,4) is 0.07 while the p(4,3) is 0.34 at

the lag of 10 pixels. This also holds for experimental

cross-transiograms. But unless transition probabilities

are estimated uni-directly, the difference is only on the

magnitude of transition probability values (i.e., curve

height) rather than on transiogram shapes. All the

transiograms with the same head class should reach to

the same sill, which is the proportion of the head class

(e.g., Figure 3C, D). This is more obvious for the

idealized transiograms, as shown in Fig. 3C, in which

all the idealized cross-transiograms approach to the

exact same value. However, there are some uncertain-

ties on experimental cross-transiograms. For example,

the experimental cross-transiograms in Fig. 3D only

approximately approach the proportion value of the

head class but do not reach the exact same value. Even

though the cross-transiograms with the same head
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Fig. 3 Examples of idealized cross-transiograms and experi-

mental cross-transiograms (1—developed land, 2—crop/grass

land, 3—forest, 4—waterbody, 5—wetland). A for Area A.

B for Area B. C, D for Area C. E, F for Area D, including a

whole subset of transiograms with the same tail class
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class reach the same sill, their shape characteristics do

reflect the distinct interactions between the head class

and other classes before they reach the same sill. They

have different correlation ranges and different curve

shapes. For example, p(1,2) in Fig. 3C has a peaked

shape (i.e., has a peak at the low lag section) with a

correlation range of 30 pixels, while p(5,2) in Fig. 3C

has a typical shape with a correlation range of 18

pixels.

From Fig. 3, we find that the idealized and exper-

imental cross-transiogram pair between two classes

have some differences. First, most of the idealized and

experimental cross-transiogram pairs have different

correlation ranges and usually the correlation ranges

of idealized cross-transiograms are smaller. For

instance, the correlation range of the idealized cross-

transiogram p(4,3) of area B is 30 pixels and the

corresponding experimental cross-transiogram has a

correlation range of around 70 pixels (Fig. 3B).

Second, an idealized and experimental cross-tran-

siogram pair may reveal different relationships

between the two classes. For example, the idealized

cross-transiogram p(5,2) in area C has a typical shape

(Fig. 3C), while the corresponded experimental cross-

transiogram has a peaked shape, showing a juxtapo-

sition relationship of these two classes (Fig. 3D).

These are reasonable, because the idealized tran-

siograms were calculated from a one-step TPM based

on the first-order stationary Markovian assumption,

which cannot capture the non-Markovian effect of

spatial data and the features of measured multiple-step

(or longer-lag) transition probabilities (Li 2007a). If

we check the land use/cover map of area C. It can be

seen that wetland patches (class 5) are very close to

crop/grass patches (class 2) but only part of the former

touch the latter. This explains the short-distance

adjacency relationship of wetland and crop/grass land.

The idealized cross-transiogram does not catch this

characteristic because immediate adjacency happens

only for part of wetland patches. Third, even if the

idealized and experimental cross-transiogram pair

reveal the same relationship, there are still some

differences between them. For example, both the

idealized cross-transiogram and the experimental

cross-transiogram from crop/grass land to developed

land (i.e., p(2,1) in Fig. 3A) reveal the interclass

adjacency situation between the two classes; however,

the experimental cross-transiogram has a series of

peaks and gradually decreases through undulation

after the first peak, while the idealized one has only

one peak in the short lag section around the 8 pixels lag

value. On the other hand, sometimes the difference

between idealized cross-transiogram and correspond-

ing experimental cross-transiogram could be small.

The idealized and corresponding experimental cross-

transiograms in Fig. 3E, F have similar sills and

Table 4 The sills and correlation ranges of corresponding idealized and experimental cross-transiograms, as shown in Fig. 3

Area Cross-transiogram

symbola
Idealized cross-transiogram Experimental cross-transiogram

Sill Range (pixels) Sill Range (pixels)

A p(2,1) 0.127 22 0.150 40

p(3,2) 0.069 18 0.067 20

B p(3,4) 0.109 26 0.147 80

p(4,3) 0.456 30 0.424 70

C p(1,2) 0.153 30 0.121 60

p(3,2) 0.153 24 0.129 20

p(4,2) 0.153 60 0.131 90

p(5,2) 0.153 18 0.121 70

D p(1,1) 0.222 20 0.231 40

p(1,2) 0.214 18 0.225 30

p(1,3) 0.438 15 0.435 30

p(1,4) 0.064 18 0.055 25

p(1,5) 0.051 15 0.050 25

aSymbol p(2,1) denotes transiogram p21(h) and corresponds to the legend style in Fig. 3
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ranges. And they comply with the rule that the values

of transiograms with the same tail class sum up to 1 at

any specific lag.

Comparison with Landscape Metrics

Relation with landscape metrics by sills and auto-

correlation ranges

The selected sixteen conventional landscape metrics

(Table 1) represent different aspects of landscape

variability, and their values for the four study areas

and five different patch types (i.e., classes) can be seen

from Supplement I. In order to explore the physical

meanings of the two features of auto-transiograms

(i.e., sill and correlation range), we calculate their

spearman’s correlation coefficients with the 16 land-

scape metrics (Table 5). It is clear that sill has a very

strong positive correlation with PLAND (landscape

proportion). Since the sill of a reliable auto-tran-

siogram approximately reflects the proportion of the

corresponding class, that is, it should be approxi-

mately equal to the PLAND value of the class, this

result is normal. The sill also has significant correla-

tion with the LPI, which is reasonable for small study

areas because one class with a higher proportion

probably has a lager LPI. ED is the total length of edge

of one patch type divided by its total area and CWED

is the sum of the lengths of contrast-weighted edge

segments divided by the total landscape area. There-

fore, sill also has significant positive correlation with

ED and CWED.

Another important finding is that autocorrelation

range has significant positive correlation with some

aggregation index including CLUMPY, PLADJ,

COHESION and AI. This means that autocorrelation

range can reflect the aggregation level of different

classes. Since class patch size has positive influence on

the value of autocorrelation range, the autocorrelation

range actually represents a patch-size-weighted aggre-

gation level of a class. Among these metrics,

AREA_AM and SPLIT have significant correlation

with both of sill and autocorrelation range. The larger

AREA_AM implies the possibly higher sill and larger

autocorrelation range, especially for the small research

area. SPLIT is a subdivision index. A higher SPLIT

value means that the class is subdivided into more or

smaller patches. Hence its correlations with sill and

autocorrelation range are strongly negative. Both sill

and autocorrelation range have no correlation with

Table 5 Spearman’s correlation coefficients between the two feature values of auto-transiograms and landscape metrics

Landscape metric Idealized auto-transiogram Experimental transiogram

Sill Range Sill Range

PLAND 0.971** – 0.968** –

LPI 0.786** – 0.743** –

ED 0.750** – 0.820** –

AREA_AM 0.687** 0.705** 0.612** 0.711**

SHAPE_AM – – – –

FRAC_AM – – – –

CWED 0.823** – 0.883** –

TECI – – – –

CLUMPY – 0.722** – 0.596**

PLADJ – 0.813** – 0.659**

IJI – – – –

COHESION – 0.672** – 0.662**

AI – 0.806** – 0.639**

nLSI – – – –

PD – – – –

SPLIT - 0.844** - 0.641** - 0.776** - 0.649**

-Means that correlation is not statistically significant

**Means that correlation is significant at the 0.01 level
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shape metrics (SHAPE_AM and FRAC_AM) and

contrast metrics (TECI). Hence, transigorams cannot

reveal the geometric complexity and the magnitude of

difference between adjacent patch types by their two

basic feature values.

Reflection of interclass relationships on cross-

transiograms

At the class level, the landscape metrics measure the

landscape characteristics of the target class, and reveal

the relationships of the target class with all other

classes as a whole. Unlike landscape metrics, cross-

transiogram can reveal the interclass relationship

between two classes. Thus, one can use a cross-

transiogram alone (by regarding all other classes as

one class) or several cross-transiograms together to

explore the interclass relationships of a class with

other classes.

For example, a cross-transiogram can indicate

whether there is a juxtaposition (or neighboring)

relationship between a pair of classes. Figure 4 shows

some examples of idealized cross-transiograms of

neighboring classes in the four areas. We can find that

all of these cross-transiograms have a high peak at a

short lag distance and gradually decrease to their sills.

The relative peak height over the sill in each cross-

transiogram is different, but the peak height ratios (i.e.,

ratios between peak relative height (PRH), peak height

(PH), and sill) of the paired cross-transiograms

between two classes are the same if the transiograms

are estimated omni-directionally or bi-directionally

(Table 6), because they represent the same juxtaposi-

tion relationship. However, for different pairs of

classes, their cross-transiogram peak height ratios

are different. The peak height ratios reflects the

magnitude of neighboring or juxtaposition strength

between two classes. The larger the ratios of PRH/Sill

and PRH/PH, or the smaller the ratio of Sill/PH, the

stronger the juxtaposition tendency of the class pair.

Among the landscape metrics, CLUMPY and

PLADJ measure the adjacencies of a specific class,

COHESIONmeasures the physical connectedness of a

specific class, and IJI measures the interspersion or

intermixing of a class, with all other classes. It is

difficult to use the values of these metrics to interpret

the interclass relationships of any two specific classes.

Taking the developed land class and the waterbody

class in the study area B as an example, the IJI values

of them are 79.32 and 79.78 (see Supplement I), which

are approximately equal. Since a higher IJI value

indicates a greater interspersion of the corresponding

class among other classes, one can conclude on the

basis of the IJI values that there is no difference

between the two land cover classes in terms of their

interspersion or intermixing among other classes in the

study area B. However, much more interclass infor-

mation can be obtained through related transiograms

(Fig. 5). The cross-transiograms involving them show

that they have different interactions with other classes.

Fig. 4 Some idealized cross-transiograms of neighboring classes in the four areas (1—developed land, 2—crop/grass land, 4—

waterbody, 5—wetland)
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For example, the cross-transiogram p(1,2) between

developed land and crop/grass land shows a neigh-

boring characteristic with a correlation range of 7

pixels, but the cross-transiogram p(4,2) between water-

body and crop/grass land shows a typical ordinary

correlation with a correlation range of 20 pixels.

Discussions

The sixteen metrics considered in this study are

commonly used metrics in many studies. For instance,

Frank et al. (2013) applied SHAPE and PD to the

assessment of landscape aesthetics and concluded that

they are able to assess and monitor landscape diversity

and naturalness. Fan and Myint (2014) selected four

metrics (PLAND, LPI, PD and AI) to measure the

urban landscape fragmentation of Phoenix. These four

metrics were also incorporated into an urban growth

potential model to simulate the urban growth pro-

cesses of Jinan City, China (Kong et al. 2012). Midha

and Mathur (2010) chose the PD, ED, and IJI to assess

the fragmentation of two constituent protected areas

and compare the magnitude between them. Li et al.

(2015a) analyzed the relationships between landscape

metrics (PLAND, PD, LPI, ED, SHAPE, COHESION)

and water quality in coastal China and found these

metrics are important for illustrating the degradation

of water quality. Lee et al. (2009) found that the spatial

heterogeneity of forests (both of composition and

configuration) has a strong impact on burn severity

and they used landscape metrics, including LPI, PD,

and AI, to represent landscape structure. In general,

previous studies on the use of landscape metrics have

demonstrated the important values of landscape met-

rics in landscape ecology, which raise the hope that

Table 6 The peak height

ratios of idealized cross-

transiograms of neighboring

classes in the four areas

(1—developed land, 2—

crop/grass land, 4—

waterbody, 5—wetland)

aPRH = PH–sill

Study area A B C D

Transiogram p(1,2) p(2,1) p(1,2) p(2,1) p(1,2) p(2,1) p(4,5) p(5,4)

Peak height (PH) 0.118 0.218 0.085 0.398 0.191 0.336 0.061 0.077

Sill 0.069 0.127 0.066 0.309 0.154 0.269 0.051 0.064

Peak relative height (PRH)a 0.049 0.091 0.019 0.089 0.038 0.067 0.010 0.013

PRH/Sill 0.71 0.72 0.29 0.29 0.25 0.25 0.20 0.20

PRH/PH 0.42 0.42 0.22 0.22 0.20 0.20 0.16 0.17

Sill/PH 0.58 0.58 0.78 0.78 0.81 0.80 0.84 0.83

Fig. 5 The experimental cross-transiograms of developed land (left) and waterbody (right) in the study area B.(1—developed land, 2—

crop/grass land, 3—forest, 4—waterbody, 5—wetland)
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transiograms and their features may also have poten-

tials in landscape ecological analysis.

The transiograms represent the transition probabil-

ities of land cover/use classes over different lag

distances. They are graphic composite measures,

which can represent the information of multiple

aspects of variability of landscape classes. Different

from real-data transiograms derived from spare sam-

ple data (experimental transiograms) or exhaustive

data (exhaustive transiograms), idealized tran-

siograms can be simply derived from a one-step

TPM. Idealized transiograms can capture basic spatial

variation features of classes (e.g., auto-correlation

ranges, cross-correlation ranges, juxtaposition tenden-

cies), but miss more-complex characteristics of spatial

autocorrelations and interclass relationships, such as

multiple peaks, troughs, or multiple ranges, that are

exhibited on real-data transiograms. The real-data

transiograms are able to capture complex features of

spatial relationships of classes, but sometimes it is

difficult to extract accurate information from them due

to their over-complexity. Although idealized tran-

siograms are comparatively simple, they are useful in

interpreting real-data transiograms. Therefore, even

though it is preferable to use experimental tran-

siograms in most cases, the idealized transiograms are

still important and probablymore useful to some users,

especially inexperienced users, in landscape pattern

interpretation due to their simplicity in curve shape

and unambiguity in range, sill and peak height values.

We consider the transiogram as a new graphic

landscape metric for measuring and visualizing spatial

variability of landscape classes. Compared with

traditional landscape metrics, transiograms are visual

measures of the complex spatial intra-class and

interclass relationships, which make them, to some

extent, easier to interpret about their implications. The

most significant merit of transiograms is that cross

transiograms measure interclass relationships. How-

ever, there are some weaknesses in transiograms that

should not be ignored. Although experimental tran-

siograms estimated from sample points can eliminate

the noise of misclassification to some extent, they may

not accurately reflect the real class proportions if

sample data deviate from the truth in class proportions,

and their shapes sometimes may be too complex to

explain accurately in detail. Idealized transiograms

depend on one-step TPMs, which may not be available

or may contain some effect of noise if they are

estimated from exhaustive data that contain much

noise (note that traditional landscape metrics should

also have this problem if estimated from data with

much noise, such as classified remote sensing images

without post-processing).

If used for spatial description of different species,

the features of transiograms might relate to the

dynamic activities of different species (e.g., home

range size, perception range, dispersal abilities). For

example, the autocorrelation range of a land use/cover

type might link with the home range of a species if the

species tend to move within patches of the land

use/cover type. The cross-correlation range and

neighboring strength of two land use/cover types

might link with the dispersal ability of a species. In

addition, transiograms may be used to describe the

spatial patterns of various landscape categories that

are formed naturally or divided by humans, including

ecological function zones and plant species.

Landscape metrics, including transiograms, address

the spatial variability of landscapes and may play an

important role in exploratory and descriptive land-

scape analysis. Landscape pattern is linked to critical

ecological processes, such as biodiversity and other

ecological values of the landscapes. The measurement

of landscape pattern is necessary for understanding the

functioning of landscapes and is a prerequisite to the

study of pattern–process relationships. The simplicity

and quick calculation of landscape metrics ensure that

they can meet the demand of understanding rapid

environmental changes. As a part of geospatial data

analysis, landscape metrics provide background infor-

mation and scenario testing of environmental policies

to policymakers and resources mangers. Therefore,

even though landscape metrics and transiograms have

some limitations, it is worthwhile to make effort to

apply them in real world studies, such as land cover

spatial and temporal changes.

Although in this study we used only small images as

study areas, the transiogram can be applied to large

maps. Computation time depends on the size of data

(number of pixels used) and the computer program

(e.g., given the same data set, using different computer

languages and different programming strategies may

result in different computation time), but it is generally

not a big concern in practice due to the following

reasons: (1) Experimental transiograms are estimated

from sample data, of which the size is usually not very

large (usually hundreds to thousands of sample data),
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so they can be computed quickly. (2) Idealized

transiograms are calculated from a TPM, which can

be estimated from map data much more easily, and the

further calculation step from the TPM to idealized

transiograms needs almost no time. (3) The estimation

of exhaustive transiograms from a large classified

image or map is indeed time-consuming or impractical

if they are estimated omni-directionally, because it

needs to count numerous pixel pairs in all directions

with many different lags (i.e., separate distances of

data pairs). However, the use of exhaustive tran-

siograms is not much necessary, because their curve

shapes are very similar to the experimental tran-

siograms estimated from a representative randomly-

selected sample data set as a small portion of the pixels

of the same image/map, thus providing little extra

valuable information (see Supplement II and Supple-

ment III). Transiograms have been used in some real

case studies with very large data sets. For example,

Zhang et al. (2017, 2018) used the Markov chain

geostatistical approach for post-processing pre-classi-

fied Landsat images to detect the urban horizontal and

vertical growth in megacities in East Asia, in which

full Landsat images and experimental transiograms

estimated from sample data sets for the large areas

were used.

This study is still preliminary with limitations,

which may be explored in future studies. First, the

analysis of the landscape metrics and transiograms in

this study has no link with any specific applications.

Second, not all landscape metrics are included;

therefore, comparisons between existing landscape

metrics and transiograms may not be sufficiently

comprehensive. Third, we examined only one scale of

observations without considering multiple grains and

extents. Fourth, due to the complexity of spatial

variability, our results and conclusions are, to some

extent, limited to the situations we examined. Hence,

further study may still be needed for a comprehensive

understanding of transiograms as a new, graphic

landscape metric.

Conclusions

This study provides some further understanding of the

class-level landscape metrics, transiograms, and the

relationships between them. It shows that the tran-

siogram may serve as a new, graphic landscape metric

with some unique features. Landscape researchers

may gain some insight into the ability of transiograms

for measuring some new aspects of landscape patterns.

The differences between idealized transiograms and

experimental transiograms are also analyzed. They

can be used separately or together according to actual

needs as they have their own advantages and weak-

nesses. A peak height ratio concept based on idealized

transiograms is also presented for quantitatively

representing the juxtaposition strength of neighboring

landscape class pairs.

While auto-transiograms can provide information

on the proportions of landscape classes and their

individual aggregation levels, cross-transiograms can

provide information on the proportions of landscape

classes, interclass adjacency types, and interclass

correlation ranges. The peak height ratios of idealized

cross-transiograms can be good indices to reflect the

neighboring or juxtaposition strength of neighboring

class pairs. Therefore, transiograms, as a new graphic

landscape metric, represent some different aspects of

landscape variability. Comparison shows that tran-

siogram sills are correlated with some conventional

landscape metrics (PLAND, LPI, AREA_AM, ED,

CWED, and SPLIT), and transiogram auto-correlation

ranges are also correlated with some conventional

landscape metrics (CLUMPY, PLADJ, COHESION,

AI, AREA_AM, and SPLIT). However, transiograms

have some characteristics different from conventional

landscape metrics: (1) As diagrams, transiograms

provide visual information, making them to some

extent more interpretable intuitively; for example,

class proportions, auto/cross-correlation ranges, and

neighboring relationships can be intuitively inter-

preted from transiograms. (2) Cross-transiograms are

able to capture complex interclass relationships, which

include interdependency and juxtaposition (i.e., neigh-

boring) relationships between classes. (3) Tran-

siograms can be estimated from real data or

calculated from a TPM, and these transiograms

estimated using different ways may be used together.

While idealized transiograms clearly reveal the basic

dependency features of landscape classes that are

implied in one-step transition probabilities, experi-

mental transiograms reveal more complex depen-

dency features of landscape classes that are contained

in sample data in different spatial lag distances.
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