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A B S T R A C T

Experimental transiogram modelling, especially joint modelling, is crucial for Markov chain random field
(MCRF) simulation of categorical spatial variables with multiple classes. Experimental transiogram estimation of
landscape categorical variables in a non-visual context and manual model fitting are tedious and time-consuming
tasks if the number of classes is large. This study presented a framework which integrated the linear inter-
polation method and the mathematical model fitting method for transiogram joint modelling to facilitate the
whole modelling procedure. The framework was developed as a tool, entitled TGRAM. The tool provides several
advanced characteristics and functions which greatly improve the efficiency of transiogram joint modelling. Two
case studies were provided to demonstrate the feasibility of the tool. The modelling results can directly provide
parameters (i.e., transition probability values at continuous lags in the required pixel size) for further MCRF
simulations in related research areas, such as land cover/land use classification, soil and lithofacies mapping,
and urban growth detection.

1. Introduction

Spatial analysis and mapping of environmental categorical variables
requires spatial modelling of these variables (Truong, Heuvelink, &
Gosling, 2013). The spatial variability of categorical spatial variables,
which is the typical characteristic of landscape spatial heterogeneity,
can represent different kinds of spatial features (e.g. land use/land
cover, soil type, lithofacies, sedimentary sequence). To qualify the
spatial relationships of different classes of categorical variables, various
models have been proposed, such as the transition probability matrix
(TPM) (de Almeida et al., 2003; Vistelius, 1949), the indicator vario-
gram (Journel & Huijbregts, 1978; Webster & Oliver, 2007) and the
transiogram (Li, 2007a, 2007b). The TPM has been employed to de-
scribe the temporal and spatial variations of geographical data for a
long time because one-dimensional (1-D) Markov chain models have
been earlier used in various fields of research (Burgess & Webster, 1984;
Logsdon, Bell, & Westerlund, 1996; Weigand, Totsche, Huwe, & Kögel-
Knabner, 2001). TPMs can represent the complex relationships among
categories (i.e., classes), but they cannot represent the complex spatial
relationships among categories across a number of spatial steps. Cur-
rently, the indicator variogram also has been widely used to describe
the auto-correlations in single classes of discrete geographic data in the

geosciences (Chiles & Delfiner, 2012). The extensive application of
variograms is due to the wide acceptance of kriging-based geostatistics
as simulation techniques for spatial variables. But as to the cross-cor-
relations among categories, indicator variograms have the limitation to
be utilized because the physical meanings of them are not easy to be
interpreted. Meanwhile, because of the symmetric characteristic of
cross-variograms, they are not able to interpret the asymmetry in the
spatial distribution of categorical variables.

Inspired by the variogram theory and pioneer studies (Carle & Fogg,
1996; Carle & Fogg, 1997; Luo, 1993; Luo, 1996; Ritzi, 2000;
Schwarzacher, 1969), the transiogram was proposed to estimate mul-
tiple-step transition probabilities and transition probability functions
over the lag distance from sample point data for Markov chain random
field (MCRF) simulation (Li, 2007a, 2007b). It is a good two-point
spatial measure for describing the spatial intra-class autocorrelations
and interclass cross-correlations of landscape categories (Li & Zhang,
2013). The advantage of utilizing transiograms lies in two aspects. The
first is that the physical meanings of transiograms are easy to be in-
terpreted. They can measure and quantify the spatial relationships
among categories (classes) across a number of spatial steps, which
means transiograms are not limited by the first-order stationary Mar-
kovian assumption on data. Secondly, the transiograms are the
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requirements for providing essential parameters for multi-dimensional
Markov chain spatial simulation. They serve as two-point spatial mea-
sures based on sample data to support MCRF models (Li et al., 2015).
They are resolution-free and can be used to measure spatial or temporal
auto-correlations and cross-correlations over different lag distances.

There are three kinds of transiograms identified in Li (2007a):
idealized transiograms, exhaustive transiograms and experimental
transiograms. Idealized transiograms refer to the transiograms that are
estimated using single-step transition probabilities on the basis of the
first-order Markovian assumption and they can be calculated from a
one-step or multi-step TPM (Li, Zhang, & Dey, 2012). Exhaustive
transiograms are extracted from images or maps of land use/land cover,
soil types, and lithofacies, among others. Experimental transiograms are
measured directly from sample data in a study area. In these three types
of transiograms, idealized transiograms and exhaustive transiograms
are useful for understanding experimental transiograms, providing ex-
pert knowledge for estimating transiogram models (Li, 2007a). But the
experimental transiograms are more frequently utilized because they
can be directly used to infer transiogram models for calculating the
local probability distributions of categorical variables at unsampled
locations in MCRF simulation. The experimental transiograms have
been successfully applied in soil mapping (Grunwald, 2009; Zhang & Li,
2008), spatial distribution simulation of clay layer depth (Li & Zhang,
2010a, 2010b), land cover post-classification (Zhang, Li, & Zhang,
2016; Zhang, Li, Zhang, & Li, 2017), and vertical urban growth detec-
tion (Zhang, Li, Zhang, & Ouimet, 2017), among others.

The practical application of experimental transiograms benefits
from their unique merits as quantitative graphic measures (Li, 2007a).
However, as experimental transiograms provide both auto-correlation
and cross-correlation information of multiple classes, the transition
probability diagrams of them can be very complex in shape. Because of
the complexity of diagram shapes of experimental transiograms, it may
not be satisfactory to use the basic mathematical models (e.g. the linear
model, spherical model, exponential model and Gaussian model) de-
veloped for variograms to fit the shapes of experimental transiograms
(Ritzi, 2000). Therefore, some more complex mathematical models
suggested for variogram modelling (Jones & Ma, 2001) were also re-
commended for transiograms (Li, 2007a), such as the cosine-ex-
ponential and cosine-Gaussian models for cross-transiograms. The
shapes of some experimental cross-transiograms may have a peak firstly
and then flatten out with increasing lag distance. To fit this type of
shapes, gamma-exponential, gamma-spherical and gamma-Gaussian
composite cross-transiogram models were also proposed (Li et al.,
2012). Furthermore, when sample point data in a study area are suffi-
cient and the experimental transiograms are reliable, linear interpola-
tion, which was proposed as a joint model-fitting method, is satisfactory
and more efficient than mathematical model fitting (Li & Zhang, 2010a,
2010b).

From the above discussion, it could be found that, since the shapes
of the transiograms are very complex, various fitting models have been
proposed in last decade to improve the fitting performance. To support
spatial simulation of landscape categories in a study area, the model
fitting may be a hard task if the number of categories (classes) is large
and all the fitting work is conducted manually. For example, if there are
10 classes, 100 fitting models for transiograms are required. To fit each
experimental transiogram, one model must be selected from various
model choices and a few parameters also need to be set for each model.
Taking gamma distribution-based composite models as an instance,
they have five parameters to set, including sill, range, alpha, beta and
weight, which must be performed by trial and error or experience (Li
et al., 2012). When the experimental transiograms have more complex
shapes to fit, modelling by these complex mathematical models means a
large and time-consuming task and expert knowledge is crucial to
support the modelling process. Although linear interpolation is a sim-
pler joint modelling method which can be conducted without regard to
the number and complexity of experimental transiograms, manual

manipulation for fitting many experimental transiograms by the linear
interpolation method is still a tedious task for researchers. Under this
situation, developing a framework of experimental transiogram mod-
elling and a relatively integrated software tool is essential to facilitating
the model-selection and parameter-setting jobs and improving the ef-
ficiency of the model fitting process.

In the field of environmental and geographical sciences, a lot of
software tools were developed to release the burden in labor-intensive
and time-consuming manual data processing, analysis and spatial
modelling over recent years (Boroushaki & Malczewski, 2008; Chen,
Yu, & Khan, 2010; Chen, Yu, & Khan, 2013; Her et al., 2017; Labiosa
et al., 2013; Liu, Guo, & Tian, 2012; Silva, Alçada-Almeida, & Dias,
2014; Tepe & Guldmann, 2017; Yu, Chen, & Wu, 2011). Related to
transition probability or variogram estimation, several frameworks or
tools have been developed. Carle (1999) released the T-PROGS software
to enable implementation of a transition probability-based indicator
geostatistical approach for simulation of sedimentary facies, in which a
transition rate method was developed for estimating transiogram
models (i.e., continuous-lag Markov chain model, see Carle & Fogg,
1997). Faulkner (2002) developed a graphical application for vario-
gram modelling based on Java classes. The application supports a least-
squares fitting algorithm for robust parametric variogram model fitting,
as well as other traditional variogram plotting and fitting utilities.
Truong et al. (2013) developed a web-based tool for applying existing
statistical expert elicitation techniques to extract the variogram of a
regionalized variable that is assumed to have a multivariate normal or
lognormal probability distribution from expert knowledge. Barca,
Porcu, Bruno, and Passarella (2017) provided an extensive cross-vali-
dation procedure and implemented it in a software application to
support practitioners in the variogram model assessment. The software
can summarize a large post-processing stage and suggests how to in-
terpret the performed analysis to rate the model to be validated. These
frameworks or software tools greatly facilitate later studies in model-
ling procedure, data processing, and output result analysis. However,
for the modelling methodology of transiograms, no visual framework or
software tool has been developed till now. It is of great importance to
building up a new framework to support the model fitting work of
transiograms, especially experimental transiograms, to further enhance
the efficiency of parameter preparation for Markov chain simulation.

In this study, a framework of experimental transiogram modelling is
developed. The framework integrates the mathematical models and
joint model-fitting methods, and it is developed as a tool, entitled
TGRAM, to facilitate the model fitting jobs of practitioners and re-
searchers. The modules and processing flows of the framework are
described and the usages of the TGRAM tool are introduced. Two case
studies are presented to demonstrate the feasibility and practicability of
the tool. In the next section, we briefly introduce the main modules of
the framework and its workflows. In Section 3, we illustrate a brief user
guide for the TGRAM tool. Section 4 and 5 provide case studies and
discussions. Concluding remarks are addressed in Section 6.

2. Framework

The framework of modelling experimental transiograms is shown in
Fig. 1. The framework includes four modules: (1) spatial data importing
module, (2) experimental transiograms estimation module, (3) tran-
siograms modelling module and (4) final transiogram models genera-
tion module. These four modules are introduced in detail in the fol-
lowing sections. Before introducing the modules of this framework, we
assume that readers/users know or are familiar with the fundamental
concepts and theories of the transiogram, transition probability, and
one-dimensional Markov chain. The basic theory of transiograms can be
found from the papers of Li (2007a), Li and Zhang (2010a, 2010b) and
Li et al. (2012).
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2.1. Spatial data importing

The spatial sample data required for estimating experimental tran-
siograms are sample point data. The sample point data in this study is a
point layer of the ESRI shapefile format and must have a projected
coordinate system. In addition to the spatial location of a point, each
sample point needs to have an attribute to save its class value. For
example, if the sample data are of land use/land cover, the class values
mean different land use/land cover types, denoted as integer numbers.
The sample points are usually collected by field surveys and expert
interpretation. Investigators can on-site observe real land use/land
cover types or interpret the land use types from remotely-sensed images
based on expert knowledge. The location and attributes of each point in
the sample layer will be read and imported into the framework as the
data source. The spatial extent of the sample point layer, which is
commonly the minimum bounding rectangle of the layer, also will be
recorded for further use in a subsequent module.

2.2. Experimental transiograms estimation

Based on the sample point data, the experimental transiograms are
able to be estimated. But four parameters need to be set in advance. The
first two parameters are “maximum lag distance” (max_h) and “lag
interval” (Δh). Since the sample layer is in a continuous space, max_h
and Δh are represented by a continuous distance measure. These two
parameters are not easy to be set by users because they may not know
what values are appropriate in advance. Therefore, the recommended
lag values are provided in the framework on the basis of the spatial
extent of the sample point layer (i.e., the minimum bounding rec-
tangle). The recommended Δh and max_h can be calculated as follows:

= +H WΔh [( )/2]/c2 2 (1)

= ×max_h Δh c (2)

where H and W are the height and width of the minimum bounding
rectangle of the sample point layer, and c is a constant, which has the
value of 20 in this study. c means the max_h is divided into c intervals,

Fig. 1. The framework of modelling experimental transiograms.
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that is, the maximum number of lag values for estimating experimental
transiograms. So we have 20 data values for an experimental transio-
gram. The users can accept the recommended Δh and max_h or adjust
the values. The values of these two parameters are of great importance
since they can directly impact the fluctuations of experimental tran-
siograms.

The other two parameters that need to be preset are “output pixel
size” (pSize) and “number of output lag values” (lagNum). These two
parameters are related to the Markov chain spatial simulation. Because
Markov chain spatial simulation usually uses a discrete space, pSize
represents the size of one pixel in the discrete space and lagNum re-
presents the actual number of lag values for final output transiogram
models.

The last option which has to be selected is the “fitting method”.
There are generally two joint model-fitting methods for experimental
transiograms: mathematical model fitting and linear interpolation. The
linear interpolation method is different from mathematical model fit-
ting because it does not use any specific mathematical models and it can
be utilized regardless of the number and complexity of experimental
transiograms, but it only may be used when experimental transiograms
are reliably estimated based on sufficient sample data.

After all of the parameters are set, a dataset which contains N2 ex-
perimental transiograms will be generated. Here N is the number of
classes in the sample layer. For example, if we have a sample layer with
3 classes (N=3) and p(i, j) is used to denote a transiogram with class i
being the tail class and class j being the head class, then 9 experimental
transiograms will be generated, including p(1, 1), p(1, 2), p(1, 3), p(2, 1),
p(2, 2), p(2, 3), p(3, 1), p(3, 2) and p(3, 3), forming a 3× 3 transiogram
matrix.

2.3. Transiograms modelling

The “transiograms modelling” module is divided into two parts,
which can be selected through the option of “fitting method” in “ex-
perimental transiograms estimation” module. If the “Mathematical
models” is selected for this option, each experimental transiogram need
to be fitted by a mathematical model, except for the one that takes the
value of (1.0 - others) in each row of the transiogram matrix. The users
may adjust the parameters of different models to optimize the fitting
results. If “Linear interpolation” is selected for the “fitting method”
option, the model fitting of transiogram will be a batch procedure for all
the experimental transiograms. The detailed workflow is given in Fig. 2.

Fig. 2a illustrates the workflow of transiogram joint modelling by
mathematical models. Firstly, an experimental transiogram p(i,j) need to
be selected. If it is an auto-transiogram, it may have two choices: fitted
by (1.0 - others) or fitted by a specific mathematical model. The re-
quirements for fitting using (1.0 - others) is described in Table 1. If we
do not fit the transiogram by (1.0 - others), several mathematical
models can be selected for this auto-transiogram, including linear,
spherical, exponential, Gaussian, Cosine-exponential and Cosine-Gaus-
sian (Table 1). Through adjusting the input parameters of a selected
model, the fitting result is optimized to be acceptable. If the selected
experimental transiogram is a cross-transiogram, besides the two
choices of fitting by (1.0 - others) and fitting by a mathematical model,
it may also be fitted by using the strategy of infering pij(h) from the
fitting model pji(h) based on the detailed balance relationship, but this
latter choice is not applicable to uni-directionally estimated experi-
mental transiograms. The equations of mathematical models for cross-
transiograms are different from those for auto-transiograms (Table 1).
Except for the mathematical models for both auto and cross-transio-
grams, there are three additional models for cross-transiograms, in-
cluding Gamma-exponential, Gamma-Gaussian and Gamma-spherical
models (Table 1) for fitting the first or only peak of experimental cross-
transiograms of neighboring classes. Input parameters for these three
models are more than those for other models. Manually fitting experi-
mental cross-transiograms using these models may be hard and time-

consuming. The framework presented in this paper can greatly reduce
the difficulty and improve the efficiency of the fitting tasks. The fitting
process is reiterated by manually selecting an unfitted experimental
transiogram and visually checking the model fitness, and it ends when
each experimental transiogram has a fitted model. If the fitted tran-
siogram model by (1.0 – others) has negative values at some lags, that
means other transiograms were not fitted perfectly. Such situation often
occurs when the head class of the fitted transiogram model by (1.0 –
others) is a minor class (i.e., the experimental transiogram being fitted
by (1.0 – others) has a very low sill). To avoid this situation, it is sug-
gested that using the (1.0 – others) model to fit an experimental auto/
cross-transiogram with a relatively large head class (i.e., with a rela-
tively high sill). The framework is flexible that if the users are not sa-
tisfied by the fitted results, they can adjust them again to get a set of
better results.

Fig. 2b presents the workflow of fitting using linear interpolation.
The workflow is much simpler than that for the fitting method using
mathematical models. The entire procedure is a circulation that the
linear interpolation model is applied to each transiogram in the dataset
of N2 experimental transiograms which is obtained in “experimental
transiograms estimation” module and it can be done automatically. The
equation for all of the experimental transiograms is uniform (Table 1)
and the input parameters for linear interpolation are pSize and lagNum,
which are also acquired by the previous module and the values of them
will not change in the fitting procedure.

2.4. Final transiogram models generation

When the model fitting work has been accomplished in the “tran-
siograms modelling” module, the final result is ready to be generated.
Before generating the final outcome, fitting results done in the previous
module are required to be checked. Firstly, the framework always
checks whether all of the experimental transiograms have been fitted or
not. Secondly, if we used mathematical models to fit transiograms, the
framework checks whether all transiogram models meet the summing-
to-one constraint in each transiogram matrix row. The summing-to-one
constraint is ensured by the fitting model of “(1.0 - Others)”. Table 1
can be referred to for the requirements of this model. If either of these
two checking processes of the framework fails, the user is asked to go
back to the “transiograms modelling” module to check and validate the
fitting results. Otherwise, if the checking is passed, the final result will
be generated for use in Markov chain spatial simulation. The final result
is a data matrix, of which each column is corresponding to a transio-
gram model pij(h) in the dataset of N2 transiogram models. Therefore,
the column number of the matrix is N2 plus one column for lag values.
The row number of the matrix is lagNum +1. The rows are corre-
sponding to the lag values (≥ 0) from 0 to lagNum × pSize. An ex-
ample of the final result is given in Section 3.

3. TGRAM tool

A tool called TGRAM was developed to implement the framework of
modelling experimental transiograms (Fig. 1). Given the need for car-
tographic capabilities in spatial visualization and operations, SharpMap
was used to read and visualize the sample point layer (shapefile
format). C#.Net high-level programming language was used to imple-
ment the framework to a software tool. The fitting results and final
results are stored in Microsoft Excel files for the convenience of further
data processing and diagramming.

Fig. 3 shows the screen shots of the TGRAM tool. It illustrates the
operational procedure for experimental transiogram joint modelling as
follows:

(1) Importing sample data: Select Open Shapefile in the Filemenu to add
a shapefile point layer (Fig. 3a). The sample point layer will be
visualized in the view window of the tool (Fig. 3b) after being
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imported. The following modelling processes are all based on this
data layer. In the Estimate Exp. Transiograms window, the Layer
name and the Class field of the sample data layer need to be selected.

(2) Recommending lag values: Click on the Recommended Lag Values
button in the Estimate Exp. Transiograms window (Fig. 3b) to pro-
vide recommended values of max_h and Δh (Fig. 3c). If the re-
commended values are not satisfactory, the user can manually
modify the values in the Estimate Exp. Transiograms window
(Fig. 3d).

(3) Estimating experimental transiograms: Other parameters that need
to set in the Estimate Exp. Transiograms window include the path for
saving the dataset of the output transiogram models, the Output
pixel size (pSize), the Number of output lag values (lagNum) and the
Fitting method for modelling experimental transiograms (Fig. 3d).
The two options for the fitting method are “Linear interpolation”
and “Mathematical models”. After setting these parameters,
clicking Generate Transiograms button can generate the dataset of
experimental transiograms.

(4) Loading experimental transiograms: In the View/Fit Exp.
Transiograms window, clicking the Select the Folder button can load
the dataset of experimental transiograms from its storing path. The
dataset is displayed as a list, of which each row corresponds to a
transiogram. For the convenience of expression, the name of a
transiogram is in the form of P(i, j) (Fig. 3e).

(5) Modelling experimental transiograms: Select one row in the list,
such as the row of P(1, 1), and then click View This Transiogram
button (Fig. 3e). If the mathematical model fitting method is se-
lected, a View Transiogram window will appear and show the ex-
perimental transiogram. Models listed in Table 1 can be selected

and model parameters can be configured. Clicking the Fitting by This
Model button will display the fitting result with a green curve. The
Save Fitting Result button realizes the saving function for the model
fitting result (Fig. 3f). If the linear interpolation method is selected,
all of the experimental transiograms in the list will be automatically
fitted by the linear interpolation model through one iterative run.

(6) Fitting results checking: All the fitted transiograms are displayed
with the green background color. The model names are listed in one
column, such as “Exponential Model”, “Gamma-Exponential
Model” and “Gaussian Model” (Fig. 3g). If the equation “Pij
(h)= (Pj/Pi)*Pji(h)” appears in the Model Name column for a
transiogram (Fig. 3g), that means the transiogram model is inferred
using the equation. Similarly, “1.0 - Others” (Fig. 3g) means the
corresponding transiogram model is fitted by (1.0 - Others). If linear
interpolation is used for transiogram model fitting, all of the model
names will be listed as “Linear interpolation” (Fig. 3h). Users can
check the list to validate and optimize the fitting results. The Gen-
erate Final Result command in the Process menu (Fig. 3i) can si-
multaneously check all of the fitting results and signal the problems
before generating the whole set of transiogram model data for use
in Markov chain simulation (Fig. 1).

(7) Generating final result: The final result of modelling experimental
transiograms is generated after the fitting results checking process
is passed. The final result is saved as a matrix in an Excel file
(Fig. 3j). Each column of the matrix represents one fitted result of a
transiogram. An element value in the matrix indicates the transition
probability from class i to class j at lag value h. The values of the
transition probabilities are capable of supporting Markov chain si-
mulation, if it is generated according to the output pixel size.

Fig. 2. The workflows of the two model fitting methods of experimental transiograms. (a) joint-fitting by mathematical models. (b) linear interpolation. In the
workflow charts, p(i, j) is a transiogram, where class i is the tail class and class j is the head class; N is the number of classes.
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4. Case studies

The following two cases demonstrate the feasibility of the developed
framework and TGRAM tool.

4.1. Case study 1

The study area is located in Bristol town, Connecticut, USA, which
has an area of 69.45 km2 (Fig. 4). It has six different land cover classes,
including built-up area (class 1), grass (class 2), agricultural field (class
3), forest (class 4), waterbody (class 5) and barren land (class 6). A
dense dataset of 3682 sample points, which were interpreted by ex-
perts, were used for estimation of experimental transiograms. Con-
sidering the sample points were dense in the study area, the linear in-
terpolation method was used to obtain transiogram models from
experimental transiograms. The parameter values for generating the
transiogram models are as follows: The max_h was set as 6000m; Δh
was 200m; pSize was 50m and lagNum was 120. Because the linear
interpolation method is simple and does not need experts' decision and
adjustment in model fitting, the joint model fitting process was

completed iteratively for all of the 36 transiograms in several minutes.
Two examples of the generated transiogram models are presented in

Fig. 5. In this figure, P(i, j) denotes the transition probability from class
i to class j. Fig. 5a shows that there are no strong fluctuations when
estimating the transition probabilities of P(1, j) from the dense sample
data. The experimental transiograms can be fitted well by linear in-
terpolation method and the fitted results are reliable. Fig. 5b gives the
transition probabilities of P(5, j). Because there are only 58 sample
points of class 5, which are 1.58% of all the samples, class 5 is a minor
class. Although the experimental transiograms display irregular con-
vexes and concaves, there are still no steep irrational fluctuations,
which means that the experimental transiograms are reliable, at least in
the low lag section. While mathematical model fitting methods may
miss such details, linear interpolation can capture all the features, such
as P(5, 1) and P(5, 4) in Fig. 5b.

4.2. Case study 2

Another study area is in Yangpu District, Shanghai, China. The
study area is a square subarea in the district, which has an area of

Table 1
Fitting models of transiograms supported by the proposed framework.

Method Model name Equationa Input parameters or requirementsb
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After all other pij(h) in a transiogram matrix
row have been fitted, the left one is fitted by
this equation

Linear
interpolation
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h h h h h h
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Output pixel size (pSize), number of output
lag values (lagNum)

a h≥ 0 for all equations.
b ai=auto-correlation range; aij=cross-correlation range; pi=proportion of class i; λ is the wavelength of the cosine function; α is the shape parameter of the

gamma distribution function; β is the scale parameter of the gamma distribution function; w is a weight parameter for the gamma distribution function component in

the composite model of Gamma-exponential, Gamma-Gaussian and Gamma-spherical; In the Gamma distribution function, ∫=
∞

− −α t e dtΓ( ) α t

0

1 .

c Gamma-exponential, Gamma-Gaussian and Gamma-spherical model for cross-transiograms were provided in Li et al. (2012).
d Linear interpolation model was provided in Li and Zhang (2010a, 2010b). Other fitting models were provided in Li (2007a).
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Fig. 3. Steps of modelling experimental transiograms in the TGRAM tool.
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4.0 km2 (Fig. 6). It is in the urban region of Shanghai and has spatially
heterogeneous and complex urban land uses. The main land uses of the
study area are commercial and public service land (class 1), industrial
land (class 2), residential land (class 3), green infrastructure (class 4)
and street (class 5). A relative dense dataset of 998 sample points,
which were also interpreted by local experts, were utilized to support
the estimation of experimental transiograms. Different from the case
study in Bristol town, the fitting method of mathematical model was
used in this case study. The parameters were also preset for generating
the experimental transiograms. The max_h was set as 1500m; Δh was
100m; pSize was 30m and lagNum was 50. 25 experimental transio-
grams were generated and each of them was fitted by a mathematical
model.

The model fitting results are presented in Fig. 7. Some basic math-
ematical models were used, such as the exponential model, Gaussian
model, and spherical model. The cosine-exponential model was applied
to capture the peak in the low lag section of P(1, 5). But this model has
its limitation in fitting the peaks of other cross-transiograms. Therefore,
the gamma-exponential model, gamma-spherical model, and gamma-
Gaussian model were employed to closely fit the single-peak features of
some other transiograms, such as P(1, 2), P(4, 1) and P(4, 3). To im-
prove the efficiency of model fitting, we inferred some transiogram

models from other fitted transiogram models. For example, P(1, 2) was
inferred from P(2, 1). It can be seen that both of these two experimental
transiograms can be fitted very well. In each line of the five transio-
grams in Fig. 7, there is one and only one transiogram which was fitted
by (1.0 - Others). The fitting effect of these transiograms was de-
termined by the fitting results of other transiograms. Judging from
Fig. 7, most of these transiograms were fitted well.

5. Discussions

It can be easily found from the above two case studies that the
developed framework and TGRAM tool can facilitate the transiogram
modelling work. The advantages of the framework are as follows:

(1) The proposed framework is in a spatial context. This characteristic
can greatly enhance the efficiency of experimental transiogram
estimation than manual operations. Furthermore, different from
traditional sample data formats, such as text file, or raster data, this
framework adopts the shapefile data format to store sample points.
Because the shapefile format is an open format, various sample data
of other formats can be converted into shapefile data. This spatial
characteristic improves the compatibility of the TGRAM tool.

Fig. 4. The study area in Bristol town, Connecticut, USA and the sample point dataset interpreted by experts.

Fig. 5. Two examples of transiogram models fitted by linear interpolation from experimental transiograms for the study area in Bristol town, Connecticut, USA.
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(2) The option of using mathematical models or using linear inter-
polation in the tool makes the transiogram modelling work more
flexible. Li and Zhang (2010a, 2010b) introduced that mathema-
tical model fitting and linear interpolation have their respective
advantages. The main advantage of linear interpolation is that it
can complete the transiogram modelling work quickly regardless of
the number and complexity of experimental transiograms. When
sample points are abundant and experimental transiograms are
reliable, linear interpolation is a very good choice. However, when
samples are sparse, mathematical model fitting based on expert
knowledge is crucial to obtaining reliable transiogram models. If
samples are dense, mathematical model fitting is also satisfactory to
transiogram modelling. But it takes longer time than linear inter-
polation. With the TGRAM tool, users can easily make their choices
according to the complex situations of different case studies.

(3) The TGRAM tool provides recommended Δh and max_h based on
Eq. 1 and Eq. 2, respectively. Since different study areas have dif-
ferent scales, it is not convenient for users to determine these two
parameters without any reference. The function of Recommended
Lag Values (Fig. 3b) can provide the parameter values. For example,
in the case study in Yangpu District, the recommended Δh is 71m
and the recommended max_h is 1420m. Referring to these two
values, we set the Δh as 100m and the max_h as 1500m.

(4) When samples are relatively sparse, choosing a suitable lag interval
is critical for obtaining reliable experimental transiograms.
However, we have to look for a relatively optimal lag interval by
trial and error. Fig. 8 shows the P(1, 2) of the case study in Yangpu
District, Shanghai, China. When we set the Δh to 10m, the ex-
perimental transiogram fluctuates steeply. But when we increase
the Δh to 100m, the experimental transiogram becomes much more
stable and reliable. It is not easy to estimate which value of Δh is
better without trying. Fortunately, the TGRAM tool can conduct the
estimation work of a whole set of experimental transiograms with a
certain lag interval quickly for a usual study area (only in a few
minutes) and then visually display them. Therefore, it is not very
time-consuming to find a suitable lag interval using the tool by
several tries. The rule of thumb is to avoid strong fluctuations in
experimental transiograms while keeping the basic features.

(5) To fit an experimental transiogram by mathematical models, one
needs to select a suitable mathematical model from various model
choices. Manual model-selection may also be a hard task for prac-
titioners and researchers because it is not easy to judge whether a
mathematical model can fit a transiogram well or not without trial
and error. The TGRAM tool has integrated all the modelling choices
into an interactive interface (Fig. 3f, Table 1). Users can con-
veniently select different models by a dropdown list box, which
makes possible a quick trial and error process. There are 6 model
choices for auto-transiograms and 10 choices for cross-transiograms
in TGRAM, if not including the (1.0 - Others) choice.

(6) After the model-selection step, the selected mathematical model has
multiple parameters to set (Table 1). For instance, the gamma-ex-
ponential model has four parameters to set, including aij, α, β and w
(sill is fixed to pj in the current version of the tool). The parameter
values need to be adjusted repeatedly until getting an optimal fit-
ting result for an experimental transiogram based on the judgement
of users (Li et al., 2012). For example, Fig. 9 gives the fitting results
of the gamma-exponential model with three sets of different para-
meter values. Among these three results, it can be found that “Fit 1”
has the optimal fitting effect. The TGRAM tool provides a simple
one-click drawing function (clicking Fitting by This Model button in
Fig. 3f), which can real-timely display the fitting results after ad-
justing the parameter values. This function greatly facilitates the
trial and error process.

(7) When the number of classes (or transiograms) is large, the tran-
siogram-modelling process may be time-consuming. To improve the
efficiency of model fitting, the framework makes available a func-
tion of “Infer pij from pji”. Theoretically, to simulate 10 classes, 45 of
100 transiogram models can be obtained by this function, which
can approximately save half the time. When we are trying to fit pij,
the tool can automatically detect if pji has been fitted. If pji has been
fitted, it will give an option of inferring pij from pji. Moreover, if the
fitting result is not satisfactory, we can further select other math-
ematical models to fit the transiogram.

(8) The tool can automatically check the fitted transiogram models and
make them conform to the summing-to-one constraint. Before ex-
porting the final transiogram modelling result, there must be one

Fig. 6. The study area in Yangpu district, Shanghai, China and the sample point dataset interpreted by experts.
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and only one transiogram fitted by (1.0 - Others) in each row of the
transiogram matrix. Otherwise, the tool will detect the problem and
give prompt feedback to assist users to adjust the model fitting.

(9) The final result of transiogram modelling is a data matrix, gener-
ated from all the transiogram fitting models, and it is saved in an
Excel file. The transition probabilities of the fitted auto and cross-
transiograms at different lag values can be found from the data

matrix. MCRF simulation can directly obtain necessary parameters
from this data matrix in its simulation procedure.

6. Conclusions

This study proposed a framework for modelling experimental
transiograms. The framework supports visual model fitting of experi-
mental auto and cross-transiograms using two joint model fitting

Fig. 7. Joint transiogram modelling by mathematical models for the study area in Yangpu District, Shanghai, China.

Fig. 8. Experimental transiograms with the lag intervals of 10 and 100m for
the same transition probability function P(1, 2) for the study area in Yangpu
District, Shanghai, China.

Fig. 9. Fitting an experimental transiogram by the gamma-exponential model
with three different sets of parameter values for the Yangpu case study area in
Yangpu District, Shanghai, China.
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methods: the mathematical model method and the linear interpolation
method. It has several advanced characteristics, such as recommended
lag interval and maximum lag distance, one-click drawing function, and
summing-to-one constraint checking. The framework was developed in
GIS environment as a software tool, entitled TGRAM, to facilitate the
experimental transiogram modelling process. Two case studies, one in
Bristol town, Connecticut, USA and the other in Yangpu District,
Shanghai, China, were conducted to demonstrate the feasibility of the
tool. These two case studies showed that both the linear interpolation
method and the mathematical model method in the tool can obtain
satisfactory fitting results for the study areas. The final modelling re-
sults generated by the tool can directly support Markov chain spatial
simulation work for land cover post-classification, urban growth de-
tection, or soil mapping, among others. The framework is flexible and
extendable.

However, because the shapes of experimental transiograms can be
very complex sometimes and experimental transiograms with ex-
tremely minor classes may not be reliable, how to effectively perform
transiogram joint modelling is a complex issue to explore. The current
TGRAM tool is still an early effort. We will consider extending the
functions of the tool in the future to make it more easy-to-use, and
further improve the efficiency of the experimental transiogram mod-
elling process.

Availability

The TGRAM tool with documentation is in the public domain. It
may be used or distributed freely. The installation package and the
source code of the tool can be downloaded for free from the website
(https://archive.org/details/TGRAM1.3).
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