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Abstract: Land use/land cover maps derived from remotely sensed imagery are often insufficient
in quality for some quantitative application purposes due to a variety of reasons such as spectral
confusion. Although object-based classification has some advantages over pixel-based classification in
identifying relatively homogeneous land use/cover areas from medium resolution remotely sensed
images, the classification accuracy is usually still relatively low. In this study, we aimed to test
whether the recently proposed Markov chain random field (MCRF) post-classification method, that is,
the spectral similarity-enhanced MCRF co-simulation (SS-coMCRF) model, can effectively improve
object-based land use/cover classifications on different landscapes. Four study areas (Cixi, Yinchuan
and Maanshan in China and Hartford in USA) with different landscapes and classification schemes
were chosen for case studies. Expert-interpreted sample data (0.087% to 0.258% of total pixels) were
obtained for each study area from the original Landsat images used in object-based pre-classification
and other sources (e.g., Google satellite imagery). Post-classification results showed that the
overall classification accuracies of the four cases were obviously improved over the corresponding
pre-classification results by 14.1% for Cixi, 5% for Yinchuan, 11.8% for Maanshan and 5.6% for
Hartford, respectively. At the meantime, SS-coMCRF also reduced the noise and minor patches
contained in pre-classifications. This means that the Markov chain geostatistical post-classification
method is capable of improving the accuracy and quality of object-based land use/cover classification
from medium resolution remotely sensed imagery in various landscape situations.

Keywords: Markov chain random field; spectral similarity; object-based classification; post-classification;
accuracy improvement

1. Introduction

Land use/land cover maps can provide critical information to many applications, such as
ecological and environmental management and urban planning. Researchers in different disciplines
showed that land cover/use data have important values in many scientific fields, such as hydrology,
agriculture and environment study [1,2]. Therefore, land cover/use data play an important role in the
study and analysis of global and regional scenarios today [2–4].

Satellite remote sensing and GIS are common methods for mapping and detection of land use/cover
and its changes [2,5–8], which can provide timely and visual geospatial information [9–14]. Due to the
wide availability of satellite images, especially medium spatial resolution satellite images such as Landsat
images, using satellite images to detect the spatial and temporal variation of land use/cover has been
a subject undergoing intense study in remote sensing and GIS [12]. Many techniques have been developed
to classify land use/cover classes from satellite images, including pixel-based classification methods and
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object-based classification methods [5,15–17]. The advantages and disadvantages of those techniques
have been discussed in many studies [18,19]. Pixel-based classification methods have been widely used in
land use/cover classification for generating land use/cover maps from low or medium spatial resolution
remotely sensed images [11,20–22]. However, due to spectral confusion and ignoring spatial correlation,
classification results from traditional pixel-based methods are relatively low in accuracy and usually
fragmented, with the salt-and-pepper effect [23]. Although some methods (e.g., majority filter) may
remove some noise, their capabilities in classification accuracy improvement are limited because they
usually do not incorporate extra credible information from other sources to correct the misclassified pixels.
In order to overcome this effect, object-based classification methods were proposed, which allows to group
contiguous pixels with similar features into image objects for classification [24–26]. Several studies have
proved that object-based classification has better performance than pixel-based classification, especially
in fine resolution images. The results generated by object-based methods are much more homogeneous
than the results generated by pixel-based classification methods. For example, Niemeyer and Canty [27]
thought that object-oriented classification has advantages in detecting changes in finer resolution
imagery [28]. However, the results of object-based classification rely highly on the correctness of the
object generation step. On the one hand, medium resolution satellite images may not provide clear
boundaries of some ground surface objects; on the other hand, land use/cover classification at medium
or coarser spatial resolutions does not require identifying the exact shapes of ground surface individual
objects but rather aim to provide relatively large patches of generalized land use/cover classes such as
built-up area and farmland. Thus, the classification results by object-based methods using medium
resolution remotely sensed images may be relatively low in accuracy when the objects are over- or
under-segmented and identified incorrectly due to various reasons, such as spectral confusion and
over- or under-emphasis of spectral variations within/between large objects [29].

Due to the importance of land cover/use information, the demand of accurate classification results
is on the increase. In order to improve classification accuracy, many studies have been done to develop
advanced classification methods [30–32]. However, due to the complexity of the landscape, insufficient
quality of remotely sensed data, limitations of classification methods and many other factors, classifying
remotely sensed images into a high-quality thematic map remains a challenge [32,33]. Land use/cover
maps derived from remotely sensed imagery are still insufficient in quality for many quantitative
application purposes [33–36]. Manandhar et al. [33] proved that the accuracy of land use/cover
classification can be improved by integrating related ancillary data and knowledge-based rules into
a classification. To improve the overall accuracy of a classification, the historical information about the
land use/cover was employed to estimate the a priori probability of each class [37,38]. As an additional
descriptive feature, ancillary data, such as height, slope or aspect, was also employed to improve
classification accuracy in many studies [38,39].

In order to improve land use/cover classification accuracy, Li et al. [40] suggested a Markov
chain random field (MCRF) co-simulation approach for post-classifying the pre-classified image data
by traditional methods. This method utilizes expert-interpreted sample data from multiple sources
as high-quality sample data in MCRF co-simulation, which takes the pre-classified image data set
by a conventional classifier as an auxiliary data set. On the one hand, human eye is no doubt the
most convenient, comprehensive and reliable tool for identifying land use/cover classes; on the other
hand, more and more data sources about ground surface landscapes, such as Google satellite images,
become available. Thus, through expert-interpreted sample data and co-simulation, the method
brings extra reliable class label information and spatial correlation information into a pre-classified
image so that the classification quality can be improved. Zhang et al. [41] demonstrated that the
MCRF co-simulation (coMCRF) model can effectively improve the accuracies of land use/cover
pre-classifications generated by several different pixel-based conventional classifiers for a relative
large area with a complex landscape. To reduce the smoothing effect of spatial statistical models
(mainly caused by the circular neighborhood) in post-classification, Zhang et al. [42] modified the
coMCRF model by incorporating spectral similarity measures into a spectral similarity-enhanced
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MCRF co-simulation (SS-coMCRF) model for land use/cover post-classification. The advantage of the
SS-coMCRF model over the coMCRF model is that it can better capture the shape features of some
land use/cover objects that have relatively distinct spectral values (e.g., waterbodies).

Object-based classification represents another commonly-used classification approach in land
use/cover classification from remotely sensed imagery. How to improve the classification accuracy
over object-based classifications has been thus an important research topic. Although there may
be a variety of methods for improving the accuracy of object-based classifications, the SS-coMCRF
model can be a unique way because it improves classification accuracy by incorporating extra reliable
information (i.e., expert-interpreted sample data from multiple sources and land use/cover class
spatial correlations). The objectives of this study are to (1) test whether and how much the MCRF
post-classification method (using the SS-coMCRF model) can improve the accuracies of land use/cover
classifications produced by an object-based classifier from medium resolution satellite images; and (2)
test the post-classification effect on different landscapes with different classification schemes by
choosing four different case study areas.

2. Materials

2.1. Remote Sensing Data

Four cases were chosen to be used in this research: (1) a part of Cixi city, Zhejiang, China,
with upper left corner coordinates (121◦13′47′′ E, 30◦16′42′′ N), recorded on 20 May 2011; (2) a part of
Yinchuan city (including some area of nearby Shizuishan city), Ningxia, China, with upper left corner
coordinates (106◦10′33′′ E, 38◦44′57′′ N), recorded on 18 June 2011; (3) a part of Maanshan city, Anhui,
China, with upper left corner coordinates (118◦21′27′′ E, 31◦46′46′′ N), recorded on 19 August 2010;
(4) a part of Hartford, CT, USA, with upper left corner coordinates (72◦48′4′′ W, 41◦53′22′′ N), recorded
on 21 June 2011. Landsat 5 TM imagery was used in this study (see Figure 1). The images consist of
seven spectral bands, with a medium spatial resolution of 30 m for Bands 1 to 5 and 7 and a spatial
resolution of 120 m for Band 6. Therefore, Bands 1 to 5 and 7 were extracted for the classification
purpose. The images were corrected for atmospheric and geometric distortion prior to use.
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Figure 1. Landsat 5 images used in case studies: (a) a part of Cixi city, Zhejiang, China; (b) a part of
Yinchuan city, Ningxia, China; (c) a part of Maanshan city, Anhui, China; (d) a part of Hartford, CT, USA.
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The image for the Cixi study area contains 722 columns by 702 rows of pixels and covers
a variety of landscape elements, including urban areas, agricultural lands, lakes, rivers and mountains.
Therefore, four major land use/cover classes were mapped, namely, built-up area, farmland, woodland
and waterbody. The image for the Yinchuan study area, which includes a part of the adjacent
Shizuishan city, contains 1354 columns by 1206 rows of pixels, with a complex landscape, including
urban areas, agricultural lands, lakes, rivers, mountains and a large area of bare lands. Therefore,
four major land use/cover classes were classified, namely, built-up area, farmland, bare land and
waterbody. Bare land refers to the areas of bare soils or rocks with little vegetation cover. Generally,
vegetation accounts for less than 15% of total cover. The image of the Maanshan study area contains
1047 columns by 800 rows of pixels. It has a more complex landscape, including urban areas,
agricultural lands, rivers, mountains and residues of iron mines. So, five major land use/cover
classes were mapped, namely, built-up area, farmland, woodland, bare land and waterbody. The image
of the Hartford study area contains 995 columns by 809 rows of pixels. The landscape covers urban
areas, agricultural lands, rivers, lakes and hills. Five major land use/cover classes were considered in
classification, namely, high intensity development, low intensity development, farmland, woodland
and waterbody. High intensity development refers to the areas with mainly constructed materials,
such as urban cores. Low intensity development means the areas with a mixture of constructed
materials and vegetation.

2.2. Expert-Interpreted Data

In this study, the SS-coMCRF model [42] was used to improve the accuracy of land use/cover
classification by taking a pre-classified image as auxiliary data. To achieve this goal, pre-classification
map data and expert-interpreted sample data were needed. For the purposes of land use/cover class
identification and accuracy assessment, besides the Landsat images, some other reference data sources
were needed for expert-interpretation of sample data (including sample data for validation). The other
data sources we used in this study include Google earth imagery, fine resolution images from Terra
server and satellite images from DigitalGlobe. The locations of sample data were randomly selected
using ArcGIS. During the expert-interpretation process, unidentifiable pixels at selected locations
were discarded and only identifiable pixels were interpreted as sample data. For each case study area,
specific quantities of expert-interpreted sample data for post-classification and validation for each land
use/cover class are given in Table 1. The total numbers of sample data (pixel class labels) used for
post-classification for the four selected study areas are 1309 (0.258% of the total image pixels in the
study area) for Cixi, 1428 (0.087% of the total image pixels in the study area) for Yinchuan, 1401 (0.167%
of the total image pixels in the study area) for Maanshan and 1500 (0.186% of the total image pixels in
the study area) for Hartford, respectively. As an example, Figure 2 shows the spatial distributions of
the expert-interpreted sample data for post-classification and the expert-interpreted sample data for
validation for the Yinchuan study area.

Table 1. Quantities of expert-interpreted sample datasets and validation data sets for the four case studies.

Cixi City Expert-Interpreted
Sample Data (Pixels)

Validation
Data (Pixels) Yinchuan City Expert-Interpreted

Sample Data (Pixels)
Validation

Data (Pixels)

Built-up area 512 147 Built-up area 338 121
Woodland 150 71 Farmland 882 324
Waterbody 31 14 Waterbody 59 20
Farmland 616 193 Bare land 149 53

Total 1309 425 Total 1428 518

Maanshan
City

Expert-Interpreted
Sample Data (Pixels)

Validation
Data (Pixels) Hartford City Expert-Interpreted

Sample Data (Pixels)
Validation

Data (Pixels)

Built-up area 347 134 High intensity development 299 94

Woodland 208 80 Farmland 429 167
Waterbody 80 67 Waterbody 36 14
Farmland 699 269 Bare land 114 30

Bare land 67 26 Low intensity development 622 277

Total 1401 576 Total 1500 582
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Figure 2. Expert-interpreted land use/cover sample data for the study area in Yinchuan: (a) a subset
of 1428 sample data for MCRF co-simulation (0.087% of the total image pixels); and (b) a subset of
518 sample data for validation.

3. Methodology

3.1. General Procedure

The flow chart of the MCRF post-classification methodology using the SS-coMCRF model was
shown in Figure 3. An object-based classification method was employed to generate pre-classified image
data. Sample data for post-classification simulation and accuracy assessment were expert-interpreted
from multiple sources, such as the original image for classification, Google earth imagery, fine resolution
images from Terra server and satellite images from DigitalGlobe. These sample data were split into
two sets, one set for parameter estimation (i.e., estimation of transiogram models and cross-field
transition probability matrix) and conditioning post-classification simulation and the other set for accuracy
assessment (i.e., validation). The estimated parameters, together with pre-classified image data and the
original remotely sensed image data, were inputs to the SS-coMCRF model for post-classification.
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3.2. Spectral Similarity-Enhanced MCRF Co-Simulation Model

The core of the MCRF post-classification method is the coMCRF model [40] and the SS-coMCRF
model [42], which incorporate all related data into a final classification through the post-classification
operation to improve the accuracy of land use/cover classification. The coMCRF model is an extension
of the MCRF model proposed by Li [43] in order to incorporate auxiliary data. The SS-coMCRF
model is a modification of the coMCRF model in order to reduce the smoothing (or filtering) effect
in post-classification, by incorporating spectral similarity measures based on the spectral values of
the original remotely sensed image used in pre-classification. So, when the original remotely sensed
image for land use/cover classification is available, the SS-coMCRF model can be used to reduce the
loss of geometric features of some land use/cover classes in land use/cover post-classification.

Li [43] introduced the MCRF theory and the Markov chain geostatistical approach for simulating
categorical fields. The MCRF model was derived by applying Bayes’ theorem [44] and sequential
Bayesian updating to nearest data within a neighborhood and could be visualized as a probabilistic
directed acyclic graph [40], thus being consistent with Bayesian Networks [44,45]. The conditional
independence assumption for nearest data within a neighborhood, extended from a property of Pickard
random fields, was used to simplify the MCRF full solution to a form that contains only transition
probabilities [43,46]. The transiogram concept is one of the important components in this model.
Li [47] introduced the transiogram as an accompanying spatial correlation measure of Markov chain
geostatistics. The transiogram theoretically refers to a transition probability-lag function:

pij(h) = Pr(Z(u + h) = j|Z(u) = i) (1)

where pij represents the transition probability from class i to class j, Z(u) stands for a spatially stationary
random variable at a specific location u and h, as a vector variable, refers to the separate distance
between the two spatial points u and u + h. Visually, the transiogram is a transition probability-lag
curve. While an auto-transiogram pii(h) represents the autocorrelation of a land use/cover class,
a cross-transiogram pij(h) (i 6= j) represents the cross-correlation of a pair of land use/cover classes.
As transition probability, cross-transiograms are asymmetric and can be unidirectional.

Considering four nearest data and the quandrantal neighborhood (i.e., seeking one nearest
datum from each quadrant sectoring the circular search area if there are nearest data in the quadrant),
the SS-coMCRF model [42] can be given as:

p[i0(u0)|i1(u1), . . . , i4(u4); r0(u0); Spectrum]

=
qi0r0

pi1 i0 (h10)Si1 i0 ∏4
g=2 pi0 ig (h0g)Si0 ig

∑n
f0=1[q f0r0

pi1 f0
(h10)Si1 f0 ∏4

g=2 p f0 ig (h0g)S f0 ig ]

(2)

where u represents the location vector of a pixel, i0 refers to the land use/cover class of the unobserved
pixel at location u0; i1 to i4 are the states of the four nearest neighbours around the unobserved location
u0 within a quadrantal neighbourhood; the left hand side of the equation is the posterior probability
of class i0; pi0ig(h0g) is a specific transition probability over the separation distance h0g between
locations u0 and ug, which can be fetched from a corresponding transiogram model; qi0r0 represents
the cross-field transition probability from class i0 at the location u0 in the primary field being simulated
to class r0 at the co-location in the covariate field (here the pre-classified image); and Spectrum here
means the spectral data of the original remotely sensed image for pre-classification, which are used to
calculate the spectral similarity-based constraining factor Si0ig .

In above equation, the spectral similarity-based constraining factor S is calculated as:

Sil ik =

{
1.0, il 6= ik
ρil ik (xl , yk)× Jil ik (xl , yk), il = ik

(3)
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where il is the land use/cover class of pixel l; ρil ik and Jil ik are the spatial correlation measure
(i.e., correlation coefficient) and Jaccard index of the spectral vectors (i.e., spectral values of different
bands) xl and yk of pixel l and pixel k, respectively. See [42] for a detailed description of the SS-coMCRF
model and the spectral similarity-based constraining factor.

3.3. Inputs and Outputs for the SS-coMCRF Model

In order to perform simulation using the SS-coMCRF model, cross-field transition probability
matrix and transiogram models are required as input parameters, besides pre-classified image
data, original remotely sensed image and expert-interpreted sample data. Transiogram models
provide transition probability values at any needed lag values. Li and Zhang [48] proved that linear
interpolation is more efficient than model fitting when samples are adequate and experimental
transiograms are reliable. To take the advantage of the linear interpolation method, sufficient
expert-interpreted sample data were selected to create reliable experimental transiograms in this study.
Figure 4 shows a subset of transiogram models estimated from the expert-interpreted sample dataset
for the Cixi case study. Table 2 shows the cross-field transition probability matrix, which expresses the
cross correlations between classes of sample data and the pre-classified image data. One cross-field
transition probability matrix is enough for a collocated co-simulation conditioned on one auxiliary data
set and it can be calculated using the transitions from the selected sample points to their corresponding
collocated points in the pre-classified image [40].

Table 2. Cross-field transition probability matrix from classes of the expert-interpreted dataset to
classes of the pre-classified data by the object-based classification for the Cixi case study.

Cross-Field Transition Probability

Pre-Classification Data

Class ** C1 C2 C3 C4

Expert-interpreted sample data

C1 0.602 0.077 0.005 0.317
C2 0 0.932 0 0.068
C3 0.231 0.231 0.538 0
C4 0.086 0.126 0.007 0.781

** C1—Built-up area; C2—Woodland; C3—Waterbody; C4—Farmland.
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Figure 4. A subset of transiogram models estimated from the expert-interpreted sample data for
the Cixi case study. P(1-1) denotes the auto transition probability of built-up area. P(1-2) denotes
the cross-transition probability from built-up area to woodland. P(1-3) denotes the cross-transition
probability from built-up area to waterbody. P(1-4) denotes the cross-transition probability from
built-up area to farmland. Lag is the separate distance between a pair of data points.
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For each simulation case, the SS-coMCRF model generated one hundred of simulated realizations.
Occurrence probabilities of land use classes at all pixels were estimated from the simulated realization
maps. Based on the maximum probabilities, an optimal post-classification map was achieved for each
case. After that, confusion matrix and Kappa coefficient were used to calculate the accuracy of each
optimal post-classification map and pre-classified image using the corresponding validation data set.

3.4. Object-Based Classification

The object-based classification (OBC) approach was initially introduced in 1970s [49,50]. With the
increased demand for OBC methods, many GIS software systems are available to use this kind
of methods for classification. ENVI is one of the most commonly used software systems and it
provides a K-Nearest Neighbor (KNN) object-based classification method. Due to its simplicity in
implementation, clarity in theory and good performance in classification, KNN has become one of
the most commonly used OBC methods. Therefore, the KNN method was employed for object-based
classification in this study. The KNN object-based classification process has two steps: segmentation
and classification. Segmentation is the way to partition a remote sensing image into different objects by
merging pixels with similar attributes [51,52]. Segmentation is the most important part in object-based
classification, because it can divide an image into homogeneous objects and ensure the classification
results more accurate [50].

The KNN method was employed to segment an original remotely sensed image into land use
segments and then chose a set of segments as training data based on different land use/cover classes
to classify the segments. The parameters of segmentation were chosen based on visual inspection and
researcher’s experience. Too many segments could increase processing time and were not necessary.
In segment settings, the value of parameter Edge was set to 30 for detecting edges of features where
objects of interest have sharp edges. Adjacent segments with similar spectral attributes can be merged.
In this study, the value of Merge Level was set to 90 to merge over-segmented areas by using the Full
Lambda Schedule algorithm. The value of Texture Kernel Size is the size (in pixels) of a moving box
centered over each pixel in the image for computing texture attributes, which was set to 3. The resulting
segments can clearly show boundaries of each land cover type. Because we conducted example-based
classification, training data for classification were selected from segmented components. The number
of object-based training samples was determined based on the researcher’s experience and 1000 object
samples were randomly selected for each study case. Each training sample was chosen to contain
only one land cover type. Based on the training samples and segments’ proximity to neighboring
training regions, the KNN method assigned segments into different classes with the highest class
confidence value.

4. Results and Discussions

4.1. Case 1

Figure 5 shows the pre-classification map and the corresponding MCRF post-classification map
for the Cixi study area. Table 3 provides a comparison of classification accuracies between the
pre-classification and the MCRF post-classification. The overall accuracy (OA) of the pre-classification
map is 70.6%. However, the OA for the MCRF post-classification map is 84.7%. The overall
improvement in land use/cover classification accuracy is 14.1%. The MCRF post-classification
increased kappa coefficient from 0.552 to 0.762. In the pre-classification map, some built-up area
pixels were misclassified into woodland and farmland. Due to the complexity of the landscape in this
area, it is difficult to distinguish built-up area from woodland and farmland by purely using the KNN
OBC method. After post-processing by MCRF co-simulation using the SS-coMCRF model, there are
obvious increases in the producer’s accuracies of built-up area (increase from 65% to 87%), woodland
(increase from 82% to 89%) and farmland (increase from 71% to 84%). In terms of the user’s accuracies,
MCRF post-classification made improvements in the classification of built-up area (increase from 79%
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to 84%) and woodland (increase from 56% to 85%). However, the producer’s accuracy of waterbody
decreased (from 57% to 50%). Considering that waterbody is a minor class, its accuracy assessment
is not reliable and has little impact on the overall accuracy. Apparently, MCRF post-classification
corrected many misclassified pixels and also reduced small noise features. A drawback is that some
linear features (mainly roads or water channels here, pre-classified as linear objects of built-up area,
woodland or waterbody), which were partially captured by the pre-classification, were lost in the
MCRF post-classification map (Figure 5).
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Figure 5. Land use/cover classification results for the Cixi study area: (a) pre-classification map;
(b) MCRF post-classification map.

Table 3. Accuracy assessment for pre-classification and corresponding post-classification for the Cixi
study area.

Object-Based Pre-Classification MCRF Post-Classification

Class ** C1 C2 C3 C4 Total User’s
Accuracy (%) C1 C2 C3 C4 Total User’s

Accuracy (%)

C1 96 2 1 22 121 79 128 2 1 22 153 84
C2 12 58 2 31 109 56 2 63 0 9 80 85
C3 0 0 8 2 10 80 0 0 7 0 7 100
C4 39 11 3 138 185 72 17 6 6 162 185 85

Total 147 71 14 193 425 147 71 14 193 425

Producer’s
accuracy (%) 65 82 57 71 70.6 87 89 50 84 84.7

** C1—Built-up area; C2—Woodland; C3—Waterbody; C4—Farmland.

4.2. Case 2

Table 4 and Figure 6 present the pre-classification results by OBC and the corresponding
post-classification results by SS-coMCRF for the Yinchuan study area. Compared with the pre-classification,
the MCRF post-classification improved the OA by 5%. All classes have improvement in both producer’s
accuracy and user’s accuracy. The MCRF post-classification increased kappa coefficient from 0.650 to
0.746. In the pre-classification map, bare land and built-up area were highly misclassified due to the
confusion of their spectral values with farmland in the remotely sensed image, thus resulting in low
producer’s accuracy for built-up area (69%) and bare land (68%). Meanwhile, low user’s accuracy
(65%) also occurred for the built-up area in the pre-classification map due to the misclassification
of some built-up area pixels into bare land and farmland. The MCRF post-classification operation
changed this situation by correcting some misclassifications. Both producer’s accuracies and user’s
accuracies of the four land use/cover classes were increased after MCRF post-classification. Similarly,
most noise was removed in the post-classification map.
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Table 4. Accuracy assessment for pre-classification and corresponding post-classification for the
Yinchuan study area.

Object-Based Classification MCRF Post-Classification

Class ** C1 C2 C3 C4 Total User’s
Accuracy (%) C1 C2 C3 C4 Total User’s

Accuracy (%)

C1 83 33 0 11 128 65 97 26 0 9 132 73
C2 32 287 5 6 330 87 21 294 3 5 323 91
C3 0 2 15 0 17 88 0 2 17 0 19 89
C4 6 2 0 36 44 82 3 2 0 39 44 89

Total 121 324 20 53 518 121 324 20 53 518

Producer’s
accuracy (%) 69 89 75 68 81.3 80 91 85 74 86.3

** C1—Built-up area; C2—Farmland; C3—Waterbody; C4—Bare land.
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(b) MCRF post-classification.

4.3. Case 3

Results for Case 3 are provided in Figure 7 and Table 5. There are some residues of iron mines
existing in the Maanshan city, which were classified as bare land. It is difficult to distinguish this kind
of bare land from built-up area in this study area. That is why the pre-classification map has a relatively
low producer’s accuracy for bare land (58%). Before post-classification, some bare land pixels were
misclassified as built up area. After post-processing by the SS-coMCRF model, some misclassified
bare land pixels were corrected. In the pre-classification map, because of spectral overlap of farmland
with built-up area and woodland in the remotely sensed image, some pixels of built-up area and
woodland were misclassified as farmland and similarly some pixels of farmland were misclassified
as built-up area and woodland, thus resulting in relatively low producer’s accuracies (e.g., 63% for
woodland and 70% for farmland). Because some waterbody areas were covered by water plants or
other vegetation and those pixels were misclassified as farmland or woodland, the producer’s accuracy
of waterbody was 85%. The MCRF post-classification operation changed this situation by correcting
many misclassifications and consequently increased the OA and kappa coefficient by 11.8% and 0.165
(from 0.591 to 0.756), respectively. Specifically, post-classification improved the producer’s accuracies
of built-up area, woodland, farmland and bare land by 9%, 13%, 13% and 19%, respectively and
improved their user’s accuracies by 19%, 13%, 8% and 9%, respectively. The filtering effect of the
MCRF post-classification method to noise was also clear.
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Table 5. Accuracy assessment for pre-classification and corresponding SS-coMCRF post-classification
for the Maanshan study area.

Object-Based Pre-Classification MCRF Post-Classification

Class ** C1 C2 C3 C4 C5 Total User’s
Accuracy (%) C1 C2 C3 C4 C5 Total User’s

Accuracy (%)

C1 101 9 0 51 7 168 60 112 2 0 23 4 141 79
C2 4 50 5 23 0 82 61 1 61 3 16 1 82 74
C3 0 3 57 0 2 66 92 0 2 62 1 0 65 95
C4 28 18 4 187 2 235 78 19 15 1 223 1 259 86
C5 1 0 1 8 15 25 60 2 0 1 6 20 29 69

Total 134 80 67 269 26 576 134 80 67 269 26 576

Producer’s
accuracy (%) 75 63 85 70 58 71.2 84 76 92 83 77 83.0

** C1—Built-up area; C2—Woodland; C3—Waterbody; C4—Farmland; C5—Bare land.

4.4. Case 4

Hartford area has quite different landscape compared with other cases. The landscape was
classified into five classes, including high intensity development, low intensity development,
waterbody, farmland and woodland (Figure 8). Due to the complex landscape and the similarity
between high intensity development and low intensity development, it is hard to distinguish these
two classes. Therefore, many pixels of low intensity development were misclassified into high
intensity development in the pre-classification map (Table 6). Therefore, high intensity development
had a relatively low producer’s accuracy (69%). MCRF post-classification was able to correct some
misclassified pixels and the producer’s accuracy of high intensity development was improved to 79%.
Meanwhile, farmland was also pre-classified with very low accuracy, mainly due to its spectral overlap
with developed area (i.e., both high and low intensity development here). MCRF post-classification
improved the producer’s accuracy of farmland by 6%. The complex landscape and the local living
style (i.e., residential houses are usually scattered in forest or farmland) resulted in high spectral
confusion among land use/cover classes except for waterbody. That should be the major reason why
the pre-classification OA was relatively low (74.6%), even if waterbody was pre-classified with high
accuracy. MCRF post-classification improved the OA by 5.6%. The MCRF post-classification increased
kappa coefficient from 0.633 to 0.711.



Land 2018, 7, 31 12 of 16

Table 6. Accuracy assessment for pre-classification and corresponding post-classification for the
Hartford study area.

Object-Based Pre-Classification MCRF Post-Classification

Class ** C1 C2 C3 C4 C5 Total User’s
Accuracy (%) C1 C2 C3 C4 C5 Total User’s

Accuracy (%)

C1 65 17 0 2 43 127 51 74 12 0 1 33 120 62
C2 6 140 0 3 31 180 78 5 147 0 3 27 182 81
C3 0 0 12 0 0 12 100 0 0 12 0 0 12 100
C4 11 6 0 21 7 45 46 5 4 0 22 5 36 61
C5 12 4 2 4 196 218 90 10 4 2 4 212 232 91

Total 94 167 14 30 277 582 94 167 14 30 277 582

Producer’s
accuracy (%) 69 84 86 70 71 74.6 79 88 86 73 77 80.2

** C1—High intensity development; C2—Woodland; C3—Waterbody; C4—Farmland; C5—Low intensity development.Land 2018, 7, x FOR PEER REVIEW  12 of 16 
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4.5. Discussions

In this study, the KNN method was used to represent the OBC approach as the pre-classifier.
The MCRF post-classification method improves land use/cover classification accuracy by taking
extra reliable information (expert-interpreted sample data from multiple sources and class spatial
correlations estimated from the sample data) into a pre-classification that is previously performed
by a conventional pre-classifier, usually based on spectral data of an original remotely sensed image.
It does not matter which method or what kind of methods was used to perform the pre-classification.
Depending on image quality, landscape complexity, classification scheme and pre-classification
operation, pre-classification accuracy may be relatively high or low; consequently, corresponding
accuracy improvement by post-classification may be different (small or large). What we aim to explore
in this study is that whether the MCRF post-classification method (here the SS-coMCRF model) can
improve the accuracy of the classification results generated by the OBC approach, by incorporating
extra reliable information that can be easily available. Although the OBC approach is segment-based
and the SS-coMCRF model is pixel-based, this does not mean that the SS-coMCRF model cannot be
applied to the classification maps generated by an object-based method. The testing cases in this
study showed that the pre-classification results generated by the KNN method is relatively low and
considerable accuracy improvement (5% to 14% depending on different landscape cases) could be
achieved and some noise (including misclassified small segments) also could be removed by the MCRF
post-classification method.

There are no strict requirements on multiple source reference images for interpreting sample
data, because what the MCRF post-classification method needs are just the land cover/use class
labels of some sample pixels rather than the whole images. So, reference images can include the
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original image for pre-classification, images at the same or similar resolutions and images with finer
resolutions. Fine-resolution images are better for discerning the land cover/use classes of sample
pixels. While widely-used classifiers mainly use spectral values for classification, human eye can
utilize much more information (such as context information) to discern the land cover/use class of
a pixel in an image. So, human eye observation may discern the correct land cover/use classes of many
pixels in an image, even if some of them cannot be correctly classified in a classification. As long as
the landscape did not change substantially (i.e., the nature of land cover/use did not change) in the
study area during the time change, reference images at similar time or even in different seasons are
suitable to use. In case some pre-selected pixels cannot be clearly discerned, they can be discarded or
alternative discernable pixels at nearby places can be used. If one source (e.g., Google satellite imagery)
is not sufficient for interpreting sample data, more data sources may be used. So, this sample data
expert-interpretation process seems ambiguous but in fact it is practical, given the availability of many
online and offline data sources at the present time.

One limitation of the MCRF post-classification method is that interpreting the needed sample
dataset from multiple sources for performing co-simulation may be somewhat time consuming.
Currently, this is the main overhead for improving land use/cover classification quality using the
MCRF approach. Although a higher density of expert-interpreted sample data may result in larger
accuracy improvement in post-classification, the accuracy improvement rate quickly decreases with
increasing density of sample data, as demonstrated by Li et al. [40] and Zhang et al. [42]. Therefore,
the basic requirement for the number of expert-interpreted sample data is that they should suit the
estimation of reliable parameters for MCRF co-simulation.

5. Conclusions

This study demonstrated that the MCRF post-classification method (i.e., the SS-coMCRF model
here) is effective in improving the accuracies of object-based land use/cover classification maps
(generated by the OBC approach using the KNN method in this study) from medium resolution
remotely sensed images with different landscapes and classification schemes. Specifically, in our
case studies, MCRF post-classification operation improved the OAs of object-based land use/cover
classifications by 14.1%, 5%, 11.8% and 5.6% for the Cixi, Yinchuan, Maanshan and Hartford study
areas, respectively. Such accuracy improvement should be attributed to the incorporation of the
expert-interpreted sample data and spatial correlation information, which can help correct a large
portion of misclassified pixels in segments in various landscape situations. Besides improving
classification accuracy, MCRF post-classification also can effectively remove classification noise or
minor sizes of patches to a large extent, thus improving recognition of land use/cover patterns.
Therefore, the MCRF post-classification method is much more than a filter that aims to remove
classification noise and minor sizes of patches, because the filtering methods do not incorporate extra
credible information from other sources into the post-classification and thus they may not improve
much or may even reduce classification accuracy (Zhang et al. 2016 [41]).
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