Transiogram — A spatial correlation
measure for categorical data
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First law of geography

Spatial correlation is the basic property of geographic data,
which account for the majority of spatial data.

Think about the first law of geography — Near things are more
related than distant things.

Spatial correlation analysis is the basic approach for analyzing
spatial patterns.

Spatial data include data of continuous spatial variables and
data of categorical spatial variables.



Categorical spatial data have spatial
auto-correlation and cross correlation

A categorical variable may include several classes.
Each class has auto-correlation.

Each pair of classes has cross-correlation.

All spatial correlations may have anisotropy.

Class spatial interdependcy/cross-correlation may have
spatial asymmetry.



Transition probability matrix

Rain Nice Snow
Rain S00  .250 250
. Nice S00 000 500

Smow \ .250 .250  .500

which describes a stationary Markov chain.



Spatial transition probability matrix

S —
Soil type 1 2 3 4 5 B 7
TPM in the x-direction
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which describes a spatially-stationary Markov
chain.



Transition probability matrix

TPM is widely used to represent class dependencies.
But it reveals limited information of spatial class
relationships

Transition-Probability Matrix

Iin state I, will stayin state
with probability 0 1

O Example

+ systemt with three states

Ty Ay Ay
II=|my gy @3 |=

T31 T3z a3

Hin state I will move to state 3

with probability 0.4

MNeaver go to state 3 from siate 2

O Requirements of transition-probability matrix
* all probabilities non-negative, and no greater than unity
« sum of each row is unity

+ probability of staying in present state may be non-zero

How about multiple spatial steps or a long lag distance h?



Transiograms
p,(W)=Pr[Z(u+h)=j|Z(u)=1]

A transiogram is theoretically defined as a two-point transition
probability function over the separation distance (i.e., spatial lag)

Graphically a transiogram p;(h) is a transition probability curve (or
diagram) with increasing lag h from zero to a certain distance

Transition probability vs spatial lag curves appeared in publications
as early as 1969 (Schwarzacher, 1969).



Typical transiogram shapes
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p(i,j)

Typical features and indices: sill, correlation range, curve shape, peak (and
trough), peak height ratio.

Cross transiograms are asymmetric and can be unidirectional, and they
have tail and head classes.



Different types of Transiograms

We have

1.

experimental (or empirical or sample) transiograms —
estimated from sample data.

theoretical transiograms or transiogram models — fitted
mathematical models

Idealized transiograms — smooth curves calculated from
transition probability matrix.

exhaustive transiograms — a kind of experimental
transiograms directly estimated from exhaustive map data



Idealized transiograms
Directly computed from a TPM
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Figure 4. Some idealized transiograms calculated from a unidirectional TPM which is computed
from soil map data.



Estimation of idealized transiograms

P(n) = [p; (m)] =[P(1)]" = [pi(1)]"

Simply by self-multiplication.

A n-step TPM is equal to a n-powered one-step TPM. (step --
- a pixel length or a time period).

Download computer program: Idealized transiograms from TPM
http://gis.geog.uconn.edu/weidong/MCG/MCG_Software.htm



Experimental transiograms

Directly estimated from sample data
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Figure 1. Unidirectional experimental transiograms estimated from a soil map data set along the

east-to-west direction. Pixel size is 20 m x 20 m. Here p(7, j) refers to the experimental transiogram
pii(h).



Estimation of experimental transiograms

F;"“l]
.ﬁ!:- h — i
Pi = S )

Count the frequencies of spatial transitions

May be estimated uni-directionally, bi-directionally, multi-directionally,
or omni-directionally. And may consider anisotropy.

Similar to estimating TPM, but need to consider a series of different
lag values.

May need to consider a tolerance width (i.e., h = h+tAh/2)

May need to consider a tolerance angle or all directions.

Download computer program: Omni-directional experimental
transiogram estimation
http://gis.geog.uconn.edu/weidong/MCG/MCG_Software.htm



Discrepancy between idealized transiograms and
experimental transiograms
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Figure 6. Idealized transiograms and their corresponding experimental transiograms calculated

from land cover data.



Transiogram models

Mathematical models fitted to experimental transiograms
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Transiogram modeling

Mainly provide transition probability values at any lag values to related
spatial models/simulation algorithms (e.g., MCRF sequential class
simulation algorithm) for spatial simulation of categorical fields.

Represent a transiogram or describe a class auto-correlation/cross-
correlation with a few model parameters.

Download computer program: (1) TGRAM or (2) Basic math models for

transiogram modeling.
http://gis.geog.uconn.edu/weidong/MCG/MCG_Software.htm



Methods and models for transiogram joint modeling

Table 1
Fitting models of transiograms supported by the proposed framework.
Method Model name Equation® Input parameters or requirements”
Mathematical For auto-transiograms
maodel Linear 1-(1-p)hia;, h<a a
pifh) = b
By =
Spherical 1—(1 - p)[1.5(h/a]) — 0.5(h/a;)}], h <a o
pth) =
P, hza
Exponential pi(h) =1 — (1 — p)[1 — exp (—3h/aq)] s [
Gaussian pih) =1 - (1 - p){1 — exp [~3(h/a)*]} a
Cosine- pidh) =1 — (1 — pJ[1 — exp (—3h/a) cos(2xh/A)] a A
exponential
Cosine-Gaussian pidh) =1 -0 - p){1 — exp [—3(h/a)”] cos (2xh/A)} a A
For cross-transiograms (i = j)
Linear i, ho<oag g
P;h/ag ij
|
Spherical » B [1.5(h/a) — [J.th."ag)}], h < aj ag
Py () = By hzay
Expaonential py(h) = p{1 — exp (~3h/ay)] a
Gaussian Pylh) = p1 — exp [—3 (h/a)*]} ay
Cosine- pith) = pi[1 — exp (—3h/ay) cos (2nh/A)] ag A
exponential
Cosine-Gaussian pilh) = p{1 —exp [-3 [hf'a,-,-]z]ccs (2reh/A)} g A
Gamma- a—1 n ag a, f, w
exponential® U{h)_ﬂ[l—mp( —3h/ ﬂ[")+T[ﬂJﬁ“[ ) cxp[ﬁy”. a=1,8>0
Gamma- " a—1 h ag a, f, w
Gaussian® pith) = p;| 1 — expl— 3h¥oy?) + rrmﬁﬂ[ ] E'XP[—U) , o ax1,B»0
Gamma- b ) N o, fow
spherical” B 1_50—[;1_ - 0_3[%] r{g}ﬁ“[%] (E] . D<h<a

Infer py; from py;

gj{h) =

-1
P'[ rr::]s”[ ] xp[;T:I_)]. hz gy

o
Py () = p; ()

For auto and cross-transiograms

Fit by (1.0 -
Others)
Linear Linear
interpolation interpolation”

n
pph)=1- 3 p;(h)
j=1
J#k
Fijhg) ey 1 — )+ Fyj (g, b= hy)

(h) =
pjh) 41— hi

After pg(h) has been fitted

After all other pg(h) in a transiogram matrix
row have been fitted, the left one is fitted by
this equation

Output pixel size (pSize), number of output
lag values (lagNum)

“ h = 0 for all equations.
b

a; = auto-correlation range; a; = cross-correlation range; p; =

proportion of class i; A is the wavelength of the cosine function; « is the shape parameter of the

gamma distribution function; 3 is the scale parameter of the gamma distribution function; w is a weight parameter for the gamma distribution function component in

o
the composite model of Gamma-exponential, Gamma-Gaussian and Gamma-spherical; In the Gamma distribution function, I'(a) = f t5-laidy,

1]

¢ Gamma-exponential, Gamma-Gaussian and Gamma-spherical model for cross-transiograms were provided in Li et al. (2012).
4 Linear interpolation model was provided in Li and Zhang (2010a, 2010b). Other fitting models were provided in Li (2007a).



Independent uses

Transiograms may be used independently to describe the
spatial patterns of a variety of spatial categories, for
example, landscape classes.

Transiograms also can be used in time dimension to
represent the time correlations of classes.

Continuous variables may be discretized into a series of
grades based on some thresholds, and then characterized
by transiograms.

Other potential uses.
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Current and Potential Applications of
the MCRF approach with transiograms

Predictive soil mapping: mapping soil types or soil textural classes
based om sample data, legacy data and other auxiliary data.

Mapping land cover/use classes and their changes in spatial or
spatiotemporal dimensions.

Mapping subsurface facies such as lithologies in two to three
dimensions.

Post-processing land cover classification maps from remotely sensed
imagery to improve accuracy and reduce noise.

Indirectly used to detect taller urban buildings based on building
shadow classification.



Soil textural mapping

Surface
= v - B sand
» Sandy loam
* B Light loam
Medium loam
- Clay

150 cm

Optimal prediction maps of soil textural classes at five depths, based on
maximum occurrence probabilities estimated from 100 simulated
realizations generated by the MCRF sequential class simulation algorithm



Land cover/use post-classification
based on expert-interpreted sample data and pre-classification

_ Land cover class

- Built-up area

Farmland

Re "0 3 &
- m—mm— 1 Kilometers

Land cover classification from remotely sensed imagery: Neural Network pre-
classification (a), and corresponding coMCRF post-classification (b).



Other applications

Detection of mid-rise and taller buildings (MTBs) based
on shadow classification post-processed by SS-coMCRF
simulation

Soil/land cover map updating by coMCRF simulation
3D subsurface facies (e.g., lithologies) modeling

Spatiotemporal modeling of land cover/use



Detected mid-rise and taller buildings
In Guangzhou City

1993 2001 2013

- Built-up area
- Vegetation area
- Waterbody

Bare land

MTBs
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Figure 9. Land-cover maps of Yuexiu district with MTB areas: (a) in 1993, (b) in 2001, and (c) in 2013;

and corresponding Landsat images (R: near-infrared, G: red, B: green) of Yuexiu district: (d) in 1993,
(e) in 2001, and (f) in 2013.



Others?

* Think about where you may use the transiogram in your
research and how.

* Also think about where you may use the MCRF model.



Lhanksg !



