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Abstract

Soil texture is directly associated with other soil physical and chemical properties and can affect crop

yield, erodibility and water and pollutant movement. Thus, maps of soil textural class are valuable for

agricultural management. Conventional spatial statistical methods do not capture the complex large-

scale spatial patterns of multi-class variables. Markov chain geostatistics (MCG) was recently pro-

posed as a new approach for the conditional simulation of categorical variables. In this study, we

apply an MCG algorithm to simulate the spatial distribution of textural classes of alluvial soils at five

different depths in a 15-km2 area on the North China Plain. Soil texture was divided into five classes –

sand, sandy loam, light loam, medium loam and clay. Optimal prediction maps, simulated maps and

occurrence probability maps for each depth were generated from sample data. Simulated results delin-

eated the distribution of the five soil textural classes at the five depths and quantified related spatial

uncertainties caused by limited sample size (total of 139 points). These results are not only useful for

understanding the spatial distribution of soil texture in alluvial soils, but also provide valuable quanti-

tative information for precision agriculture, soil management and studies on environmental processes

affected by surface and subsurface soil textures.

Keywords: soil textural class, alluvial soil, predictive mapping, Markov chain geostatistics, transio-

gram, soil management

Introduction

The North China Plain is the largest plain in China and is

one of the major agricultural regions. The soils in the plain

are derived from recent alluvial deposits and are typically

composed of layers originally deposited under flood condi-

tions. Thus, soil texture may be very varied with depth.

Moreover, rivers frequently changed their courses over time

which adds complexity to the spatial structure of soils to

explain why the spatial distribution of surface and subsur-

face soil texture in the plain is complicated (Shi et al.,

1986). At the regional scale, soil profiles may markedly dif-

fer between different sites in terms of textural classes,

sequences, numbers of textural layers and thickness, a con-

sequence of variability in previous flood events (Li et al.,

1997). It is therefore difficult to map soil texture accurately

especially for subsurface depths from sparse field observa-

tions. Although remotely sensed data may be used to pre-

dict topsoil texture, such as clay content (Odeh &

McBratney, 2000), their use for mapping subsoil textural

variation is not possible (Vitharana et al., 2006). Soil maps

in China are usually hand drawn and based on very sparse

field observations; thus, they do not reveal detailed variation

in soil texture. Maps showing variation in subsurface soil

texture are unavailable for the North China Plain which

poses a problem to the selection of appropriate precision

agricultural methods.

Soil texture is a categorical variable with several classes.

The non-parametric indicator kriging-based sequential indi-

cator simulation technique has been used in simulating cate-

gorical variables from sample data (Journel & Isaaks, 1984;

Bierkens & Weerts, 1994; Deutsch, 1998; Deutsch & Journel,

1998). However, this approach is essentially linear and has
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proved difficult for incorporating interclass relationship

information for practical purposes (Goovaerts, 1997; Boga-

ert, 2002; McBratney et al., 2003). It usually generates dis-

persed patterns (i.e. short-range variations and noise) and

geologically unrealistic transitions between categories in sim-

ulations (Deutsch, 1998). Interclass relationships, such as

cross-correlations, neighbouring relationships and directional

asymmetries, are important aspects of heterogeneity and

ignoring or insufficiently incorporating them in a simulation

means that the results are not based on all spatial informa-

tion as derived from the samples.

Markov chain geostatistics (MCG) has been proposed as a

non-parametric approach with nonlinear estimators and the

ability to incorporate interclass correlations (Li, 2007a).

MCG refers to Markov chain models, the transiogram and

related algorithms based on the recently proposed Markov

chain random field (MCRF) theory (Li & Zhang, 2007). In

this paper, concern is with multiple nominal classes which

are difficult to cope with by other methods. MCG has dis-

tinct advantages over indicator kriging for simulating cate-

gorical variables. For example, it can objectively reduce

spatial uncertainty in predicted results and generate more

realistic patterns given the same sample data sets (Li &

Zhang, 2007; Zhang & Li, 2007). Another special characteris-

tic of MCG is that it can generate polygonal patterns similar

to conventional area-class mapping.

We have used MCG to simulate the spatial distribution of

textural classes in surface and subsurface soils in a typical

alluvial soil in the North China Plain. The objectives were

to: (i) analyse the spatial distribution of textural classes in

alluvial soils in the North China Plain; and (ii) develop a

practical method for mapping surface and subsurface soil

textural distributions from sparse samples.

Methods and materials

Markov chain random field

The theoretical foundation of MCG is the MCRF theory as

described by Li (2007a) which extends Markov chains into

any dimension for geospatial modelling. The spatial measure

for MCG is the transiogram which is based on transition

probabilities in space for characterizing inter- and intra-cor-

relations of classes.

Let Z be a categorical random variable with n classes,

defined in a state space S = (1, 2,…, n) with n different

states, and z be a specific state (e.g. textural type) of Z at a

specific location. A transiogram is defined as a function of a

transition probability over a continuous lag h:

pijðhÞ ¼ Prðzðxþ hÞ ¼ jjzðxÞ ¼ iÞ; ð1Þ

where x represents any specific location. An auto-transio-

gram pii(h) represents the self-dependence (i.e. auto-correla-

tion) of a single class i and a cross-transiogram pij(h) (i „ j)

represents the cross-dependence of class j on class i. Here

class i is called a head class and class j is called a tail class.

For two-dimensional spatial simulation, if only nearest

data locations (called nodes) in four cardinal directions are

considered, then the conditional probability distribution of Z

to have a state k at an unobserved location x in a MCRF

can be simply written as

p½x; kjðNÞ� ¼ Pr½zðxÞ ¼ kjzðx1Þ ¼ l; zðx2Þ ¼ m; zðx3Þ

¼ q; zðx4Þ¼r� ¼
p4krðh4Þp3kqðh3Þp2kmðh2Þp1lkðh1ÞPn
f¼1 ½p4frðh4Þp3fqðh3Þp2fmðh2Þp1lfðh1Þ�

;

ð2Þ
where N represents the conditioning data; any pij(h) repre-

sents a transition probability from state i to state j with a

lag h; 1, 2, 3 and 4 represent the four cardinal directions;

h1, h2, h3 and h4 represent the distances from the current

location x being estimated to its nearest known neighbours

x1, x2, x3 and x4 in the four cardinal directions, respec-

tively, and k, l, m, q and r represent the states of the Mar-

kov chain at the five locations x, x1, x2, x3 and x4,

respectively, all defined in a state space S = (1, 2, …, n).

In directions 2, 3 and 4, transitions are from the current

location x to its nearest known neighbours, but in direction

1 (i.e. the coming direction of the Markov chain) the transi-

tion is from the nearest known neighbour x1 to the current

location x to be estimated. From equation (2), we can see

that transiograms are necessary to provide transition proba-

bilities at required lags to the MCRF model for estimating

the conditional probability distribution of a random vari-

able at a location. In this study, equation (2) (for four

nearest known neighbours) and its further simplified forms

(for less than four nearest known neighbours) were used in

the simulation algorithm.

Transiogram estimation and modelling

In practice, an experimental transiogram is estimated directly

from sample data by counting the number of transitions

from a class to itself or another class over a sequence of

lags (e.g. numbers of pixel length for raster data) using the

following equation:

p̂ijðhÞ ¼ FijðhÞ=NiðhÞ; ð3Þ

where NiðhÞ ¼
Pn

j¼1 FijðhÞ is the total of elements in the ith

row in a transition frequency matrix; Fij(h) represents the

number of transitions from class i to class j at the lag h and

n is the total number of classes. For sparse samples, to

acquire reliable experimental transiograms a lag tolerance of

Dh is set around the lag h, which may be decided by users

according to the density of samples. If the variable Z is

anisotropic, experimental transiograms have to be estimated

directionally with a tolerance angle similar to estimation of

variograms.
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Transiogram models for simulation use may be acquired

through joint model fitting of experimental transiograms

with expert knowledge (Li, 2007b). This approach is widely

applicable but relatively time consuming, and it is also diffi-

cult to fit the complex shapes of experimental transiograms.

An efficient method is to use a method to interpolate experi-

mental transiograms into continuous models (Li & Zhang,

2007). This method is reliable when samples are sufficient to

generate reliable experimental transiograms. The linear inter-

polation method is expressed in the following equation:

pijðhÞ ¼
p̂ijðhkÞðhkþ1 � hÞ þ p̂ijðhkþ1Þðh� hkÞ

hkþ1 � hk ð4Þ

where p̂ijðhkÞ and p̂ijðhkþ1Þ are two neighbouring estimated

values in an experimental transiogram; hk+1 and hk are the

corresponding lags of the two neighbouring estimated values

with hk+1 > hk and pij(h) is the value to be interpolated (or

estimated) at the lag h between hk+1 and hk.

Transiogram modelling for Markov chain simulation of

categorical variables must meet three constraint conditions –

non-negative, no nugget and transition probabilities with a

common head class summing to 1 at used lags (Li, 2007b).

The transition probabilities obtained through equation (4)

can meet all three constraint conditions at used lags and are

therefore valid. However, the third condition may not be

met at very high lags (e.g. lags close to the extent of the sim-

ulation domain), which are normally unused in random-path

simulation algorithms, but may be used in some fixed-path

simulation algorithms. In the case where the third condition

cannot be met, it is proper to set the sills (or heights) of

interpolated transiogram models at the high-lag section to

the proportions of their corresponding tail classes, as sug-

gested in Zhang & Li (2008). The other way to exactly

ensure the third condition is to simply infer one transiogram

model from others in each subset with a common head class

by the following equation

pikðhÞ ¼ 1�
Xn

j¼1
j 6¼k

pijðhÞ ð5Þ

Thus, the experimental transiogram p̂ikðhÞ does not need to

be interpolated. This method was proposed for joint model-

ling of experimental transiograms using mathematical models

(Li, 2007b). It may be used, but is normally unnecessary

when equation (4) is used. In this study, we used equation

(4) to obtain transiogram models from experimental transio-

grams estimated from sample data.

Simulation algorithm

For simulation, the classes are labelled as 1, 2,…, n in

an arbitrary sequence, thus forming a state space S =

(1, 2, …, n). These numbers do not justify magnitudes. The

random-path MCG simulation algorithm for point samples

is called Markov chain sequential simulation (MCSS) (Li &

Zhang, 2007). In simulation, the four cardinal directions are

replaced by the four sectors of a search circle (i.e. quad-

rants), each covering a quarter of the search circle. Thus, in

each sector a nearest known neighbour (labelled node,

including sampled locations and previously simulated loca-

tions) is searched. The final nearest known neighbours found

in the four sectors constitute the specific Markov chain

model for estimating the unlabelled node. In the case where

no labelled node can be found in some sectors (e.g. at the

beginning of simulation or on boundaries), the number of

nearest known neighbours found may be less than four (Li &

Zhang, 2007). Choice of a search radius is a decision a

user makes based on sample density, but the search radius

should not be so small that the search circle covers no

nearest known neighbour frequently at the initial stage of a

simulation.

The simulation domain is divided into N nodes (or pixels)

on a regular grid, and all nodes at sampled locations are

labelled. The MCSS algorithm includes the following steps:

Step 1. Select a search radius for a simulation and split all

the nodes of the simulation domain into two sets, the

labelled and unlabelled nodes.

Step 2. Randomly pick a node from the unlabelled node set.

Step 3. Search for at most four nearest labelled nodes within

the search circle, one from each sector of the search circle if

there are labelled nodes in the sector.

Step 4. Estimate the conditional probability distribution of

the state of the unlabelled node using the corresponding

Markov chain model provided in equation (1) or its simpli-

fied forms, depending on the number of nearest known

neighbours.

Step 5. Draw a specific state (i.e. label) for the unlabelled

node from the cumulative conditional probability distribu-

tion by Monte Carlo sampling.

Step 6. Add the newly simulated node to the labelled node

set for conditioning in subsequent simulations of other unla-

belled nodes and delete it from the unlabelled node set.

Step 7. Repeat steps 2–6 until all unlabelled nodes are visited

and every unlabelled node has been assigned a simulated

value (i.e. a label).

Study site and sample data

The study site (36�51¢N, 115�3¢E) has an area of about

15 km2 at Quzhou Experimental Station, China Agricultural

University, Quzhou County, Hebei Province. The topography

is virtually flat with an elevation from 34.5 to 37.3 m; most

of the area is a slight depression on an alluvial fan of the

Zhang River. A tributary of the Zhang River crosses the

middle of the area from north to south. An old course of

the Zhang River passes through the west part of the area
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from north to south (Shi et al., 1986; Li et al., 1997). Soils

are saline to varying degrees. Variation in soil texture is typi-

cal of alluvial soils with three to six textural classes within

the first 2 m and the surface texture is dominantly sandy

loam, clay and light loam.

In all, 142 sample points were selected on a triangular

grid with a sampling interval of 350 m (Figure 1); three

points had to be excluded because they occurred within vil-

lages. Soil textures were recorded by excavating pits to a

depth of 2 m. Differences in soil texture in each soil profile

were recorded by field texturing supported by laboratory

analysis of a small number of soil samples from previous

soil survey data (Li et al., 1999). Although the determina-

tion of soil texture at many sampling locations and at dif-

ferent depths is costly, the results are of long-term value

because changes in soil texture below the plough layer are

likely to be minimal.

The initial soil textural classes were sand, sandy loam,

light loam, medium loam, heavy loam and clay according

to the soil textural system used in China (Li et al., 1999).

However, because the incidence of heavy loam was very

small, this textural class was combined with medium loam.

Thus, we used five textural classes – sand, sandy loam, light

loam, medium loam and clay, indicated by numbers 1, 2, 3,

4 and 5, respectively. We chose five soil depths for model-

ling the spatial distribution of textural classes in the hori-

zontal two dimensions – 0 (i.e. surface), 50, 100, 150 and

200 cm. For each depth, we had data for 139 sample

points. The surface soil texture essentially represents the

texture of the ploughed layer in which any differences in

texture had been destroyed. The ploughed layer is usually

30 cm deep; thus, the texture at 50-cm depth is below this

zone. The textures below the plough zone affect water and

solute transport to groundwater and the growth of deep-

rooted crops.

For simulation, the area was subdivided into a 239 · 97 grid

with an individual pixel size of 25 · 25 m2. Omni-directional

experimental transiograms were estimated from sample data
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Figure 1 The study site and locations of

observed soil profiles in the study area.
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for each of the five sample depths and interpolated into con-

tinuous models using equation (4) for use in simulations. A

lag tolerance of six pixel lengths was chosen for estimating

experimental transiograms. All observed data from the 139

points were used as conditioning data in simulations.

Results

Auto- and cross-correlations

Figure 2 displays a subset of the omni-directional experimen-

tal transiograms and interpolated models with head class 3

(the light loam class) for 50-cm depth, and Figure 3

shows the same with head class 5 (clay) for 100-cm depth.

Because the sample size was only 139, experimental transio-

grams are irregular and have only a small number of esti-

mated values (nine values within the 2500 m lag). In addition,

periodicities appeared in some experimental transiograms,

particularly those with head classes 2, 3 and 4. However, we

ignored them in estimating correlation ranges because of their

usual irregularity with shallow amplitudes. We approximately

inferred the auto- and cross-correlation ranges of classes from

those experimental transiograms. Table 1 provides the

approximate correlation ranges of classes at 100-cm depth.

An auto-transiogram represents the auto-correlation of a

single class and its correlation range to some extent also

reflects the boundary spacing (polygon length or width) of

the class. At 100-cm depth, it can be seen from Table 1 that

clay and sand have long auto-correlation ranges of 900 and

1000 m, respectively. This means that they occur in larger

patches and this will result in larger boundary spacings in

simulations. Other classes have a shorter auto-correlation

range of about 500 m which means they occur in smaller

patches. Cross-transiograms indicate the interdependencies

and asymmetries between classes. Short cross-correlation

ranges usually occur between a class with large patches and

neighbouring class with small patches, and long cross-corre-

lation ranges normally occur between classes that are often

located distantly. At 100-cm depth, light loam and clay have

the longest cross-correlation range of 1200 m; sandy loam

and clay have a short cross-correlation range of 500 m.

Sills of transiograms or heights of experimental transio-

grams at the lags beyond correlation ranges are reflections of

tail class proportions. The sills can be approximated from

the experimental transiograms in Figures 2 and 3 and they

are close to the corresponding tail class proportions provided

in Table 2. Because we did not infer transiogram models by

using mathematical models to fit experimental transiograms,

no exact parameters (sill, range and model type) of transio-

gram models were used in this study.

Optimal prediction

For each of the five sample data sets, 100 simulated maps

were generated which were used to estimate occurrence

probabilities of each class at all locations. For each sample
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Figure 2 Experimental transiograms and

interpolated models with head class 3 (light

loam), estimated from the sample data of

soil texture at 50-cm depth. The vertical

ordinate represents transition probabilities

(e.g. p31 refers to transition probabilities

from class 3 to class 1).
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data set, an optimal prediction map was further acquired

by assigning class labels to unobserved locations where

corresponding classes have maximum occurrence probabili-

ties. This represents a way of optimal prediction which dif-

fers from interpolation and is practical for efficient

simulation algorithms such as MCSS. Figure 4 displays the

optimal prediction maps for soil textural classes at five

depths.

From Figure 4, it can be seen that there is no textural

class ‘sand’ in the surface layer and ‘sandy loam’ occupies

most of the area in the central and eastern parts. One reason

may be that no surface soil is sand and another may be that

tillage and manuring have homogenized the texture of sur-

face soils even if there was sand previously at some places.

Clay and medium loam occur at the surface in the western

part of the study area and several small areas of light loam

occur within the larger one of sand loam.

At 50-cm depth, sandy loam is still the dominant textural

class (Figure 4), but areas of sand and medium loam also

occur. At this depth, the soil texture has effects on root

extension and nutrient leakage. At 100-cm and deeper

depths, sand becomes the dominant textural class and clay

the second with other textural classes occurring in small

patches.

Spatial pattern and uncertainty

Although optimal prediction maps show which class has the

maximum probability to occur at a location, they have some

common deficiencies: (i) they cannot characterize the real

variation (or patterns) of soil textural classes such as the spa-

tial correlation observed in the data; (ii) they tend to under-

estimate weakly auto-correlated (small-patch) classes and

overestimate strongly auto-correlated (large-patch) classes

because of the accompanying smoothing effect, and (iii) they

do not provide a visual and quantitative measure of the

uncertainty of the estimated variables. These characteristics

are commonly shared by various geostatistical approaches.

However, problems (i) and (ii) are not evident in our

study (Table 2) which may be partially related to the incor-

poration of interclass relationships in MCG.

Table 1 Approximate auto- and cross-correlation ranges of different

soil textural classes inferred from experimental transiograms esti-

mated from the soil textural sample data set at 100-cm depth

Soil textural class

Approximate correlation range (m)

1

Sand

2

Sandy

loam

3

Light

loam

4

Medium

loam

5

Clay

1. Sand 900 400 500 500 900

2. Sandy loam 400 500 500 400 500

3. Light loam 500 500 500 700 1200

4. Medium loam 500 400 700 500 900

5. Clay 900 500 1200 900 1000
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Figure 3 Experimental transiograms and

interpolated models with head class 5 (clay),

estimated from the sample data of soil tex-

ture at 100-cm depth. The vertical ordinate

represents transition probabilities (e.g. p51
refers to transition probabilities from class 5

to class 1).
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Figure 5 displays three simulations of textural class distri-

bution for each of the five soil depths. Each map shows one

possible spatial distribution of soil textural classes at the cor-

responding depth under the spatial uncertainty caused by

incomplete observation. It can be seen that these spatial pat-

terns are more complex than the corresponding optimal

maps shown in Figure 4. It can also be seen that the general

sizes of boundary spacings of single classes are in accordance

with their corresponding auto-correlation ranges and the spa-

tial distribution structures of class pairs are obviously related

to their cross-correlation ranges. For example, at 100-cm

depth, clay and sand have large boundary spacings which

correspond to their long auto-correlation ranges (Table 1)

and clay and sandy loam tend to occur as close neighbours

which accords with their short cross-correlation range.

While multiple simulations may demonstrate spatial

uncertainty in patterns, occurrence probability maps of clas-

ses can represent spatial uncertainty more efficiently, more

accurately and in a clearer manner. Figures 6 and 7 provide

single-class occurrence probability maps and maximum

occurrence probability maps of soil textural classes at

depths of 50 and 100 cm. The occurrence probability map

of a class clearly indicates the estimated occurrence proba-

bility of the class at every location. It can be seen that at

50-cm depth, sandy loam dominates and occurs mainly in

the central and the eastern parts, and clay appears mainly

in the west (Figure 6). However, at 100-cm depth, sand and

clay dominate, whereas the former tends to occur in the

west and the latter tends to occur in the east (Figure 7).

These single-class occurrence probability maps may

be directly used as data input in risk assessment and

uncertainty analysis in the modelling of affected variables.

The maximum occurrence probability maps can be used to

assess the quality of corresponding optimal prediction maps.

Surface

50 cm

100 cm 200 cm

150 cm

Sand

Sandy loam

Light loam

Medium loam

Clay

Figure 4 Optimal prediction maps of soil

textural classes at five depths, based on max-

imum occurrence probabilities estimated

from 100 simulations.

Table 2 Estimated areal proportions of different soil textural classes at different depths in the study area

Depth (cm)

Soil textural class

Sand Sandy loam Light loam Medium loam Clay

SA RE OP SA RE OP SA RE OP SA RE OP SA RE OP

0 0.00 0.00 0.00 0.77 0.73 0.75 0.11 0.11 0.08 0.04 0.08 0.08 0.08 0.08 0.08

50 0.15 0.16 0.13 0.50 0.46 0.52 0.09 0.11 0.10 0.06 0.07 0.06 0.19 0.20 0.19

100 0.36 0.36 0.41 0.14 0.16 0.12 0.06 0.07 0.05 0.09 0.10 0.07 0.35 0.33 0.34

150 0.45 0.40 0.43 0.06 0.08 0.07 0.05 0.06 0.05 0.14 0.13 0.10 0.31 0.33 0.36

200 0.50 0.47 0.53 0.02 0.03 0.03 0.07 0.09 0.08 0.12 0.13 0.10 0.29 0.28 0.26

SA, estimated from sample data for each depth; RE, estimated from 100 simulations for each depth; OP, estimated from the corresponding

optimal prediction map for each depth.
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A larger average maximum probability generally means that

the optimal prediction map has higher quality (i.e. less

uncertainty) (Li & Zhang, 2007).

Conclusions

We applied the random-path MCG simulation algorithm to

simulate the spatial distribution of textural classes of alluvial

soils at five different depths in an area of 15 km2 in the

North China Plain. Transiograms were used to estimate the

auto-correlation of single textural classes and the interclass

relationships between different textural classes. The simula-

tions proved to accurately reflect actual variations in soil tex-

tural classes at different depths. Uncertainty in the spatial

distribution of different soil textural classes was quantified

and demonstrated by occurrence probability maps. The simu-

lations showed that sandy loam dominates the upper soils

(surface and 50 cm depth), whereas sand and clay dominate

the lower soils (100-, 150- and 200-cm depths). The results

aid the understanding of the spatial structure of soil texture

in alluvial soils and also provide valuable quantitative

information for precision agriculture, site-specific soil man-

agement and studies on environmental processes which are

affected by surface and subsurface soil textures.
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Figure 5 Simulated maps of soil textural classes at five depths. Numbers 1, 2, 3, 4 and 5 in the legend refer to sand, sandy loam, light loam,

medium loam and clay, respectively. R1, R2 and R3 in labels refer to three different simulated maps.
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