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Soil properties (or variables) are usually classifi ed into multiple 
classes (or intervals) and delineated as area-class (i.e., polygon) 

maps. Area-class soil maps are widely used in soil science and they 
are crucial data for natural resources management and environmen-
tal studies. Because exhaustive fi eld survey and sampling for accurate 
soil mapping are impractical, soil area-class mapping has to be based 
on limited samples and expert interpretations. Thus, hand-delin-
eated maps are inevitably subject to map creators’ personal under-
standing of the studied areas and classes. Furthermore, a single soil 
map cannot refl ect the inherent spatial uncertainty of soil occurrence 
at unsampled locations. Therefore, it is desirable to use quantitative 
stochastic simulation techniques for soil mapping because they may 
avoid subjectivity in map creation and reveal the spatial uncertainty 
associated with soil classes mapped from limited samples.

Recently, a triplex Markov chain conditional simulation 
method was proposed for simulating soil classes from survey line 
data in the horizontal two dimensions (Li et al., 2004). While its 
practicality is limited, the method has demonstrated some special 
capabilities of multidimensional Markov chain models in dealing 
with soil classes. For example, interclass relationships (i.e., cross-cor-
relations, neighboring relationships, and directional asymmetry of 
class patterns) can be simply incorporated into simulations through 
cross transition probabilities (i.e., transition probabilities between 
different classes) and large-scale soil patterns may be captured effec-
tively when a simulation is conditioned on relatively abundant sur-
vey line data. To further extend Markov chains into a Markov-chain-
based practical geostatistical technique, several major issues have to 
be solved, as mentioned in Li et al. (2004, p. 1488–1490) and Li 
and Zhang (2005): (i) parameter estimation from point samples; 
(ii) underestimation of small classes in simulated realizations (here 
small classes refers to classes that have area proportions less than the 
average); and (iii) algorithm design for dealing with point samples, 
particularly randomly or irregularly distributed point samples.

With the proposition of the transiogram as a new spatial rela-
tionship measure for categorical data (Li, 2006), the parameter esti-
mation problem in Markov chain conditional simulation was solved 
by using transiogram models as input parameters. Transiogram 
models can be estimated from various data types (Li and Zhang, 
2005, 2006). Recently, Li (2007a) further proposed a Markov chain 
random fi eld (MCRF) theory, which proved the small-class under-
estimation problem of the coupled Markov chain model and solved 
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it in Markov chain conditional simulation. The MCRF theory 
proposes a single-chain-based Markov random fi eld and estimates 
unsampled locations by considering the distant (or high-order) 
interactions of the unknown location being estimated with its near-
est known neighbors in different directions. Thus it differed from 
earlier multidimensional Markov chain models (for linear models, 
see Lin and Harbaugh, 1984; Luo, 1996; Carle and Fogg, 1997; for 
nonlinear models, see Elfeki and Dekking, 2001; Li et al., 2004), 
which used multiple one-dimensional Markov chains in multidi-
mensional simulations, and also differed from Markov mesh models 
(sometimes also called Markov chain models in image analysis; e.g., 
Qian and Titterington, 1991; Gray et al., 1994; Wu et al., 2004) 
and conventional Markov random fi eld models (e.g., Geman and 
Geman, 1984; Norberg et al., 2002), which used cliques in simula-
tion. Because a MCRF contains only one chain in a space, it does 
not involve unwanted transitions and therefore does not underesti-
mate small classes in simulated realizations. Here the term unwanted 
transitions refers to transitions of multiple chains to the same loca-
tion with unequal states. Because these transitions cannot get a com-
mon state for the unsampled location to be estimated, they have 
to be excluded in building multiple-chain-based multidimensional 
Markov chain models (see Elfeki and Dekking [2001, Fig. 3] for 
exclusion of unwanted transitions in the coupled Markov chain 
model). While the MCRF theory provides the theoretical backbone 
of Markov chain geostatistics (MCG), effective applications of this 
new geostatistical idea to real world issues actually lie with the devel-
opment of practical simulation algorithms. Therefore, a major task 
for the development of MCG is the algorithm design for dealing 
effectively with randomly or irregularly distributed point sample 
data, because random sampling is the traditionally and widely used 
sampling scheme in soil survey, and most existing soil sample data 
sets are random or irregular samples.

In this study, we designed a MCRF-based random-path 
sequential simulation algorithm for simulating soil classes from 
randomly distributed point samples, and such an algorithm is also 
applicable to regular samples. We used different random sample 
data sets to test the effectiveness of the algorithm. The objective of 
the Markov chain sequential simulation (MCSS) algorithm design 
process was to develop the MCG idea into a practical technique for 
predictive soil mapping and soil spatial uncertainty analysis so that 
MCG becomes a widely applicable new geostatistical approach. To 
demonstrate the advantages and special features of the algorithm, we 
used the widely used indicator kriging (IK) simulation algorithm—
the sequential indicator simulation (SIS) with ordinary indicator 
kriging (OIK) (see introductions in Goovaerts, 1997, p. 284–300, 
376–378), denoted as SISoik here, to conduct simulations on the 
same data sets for a comparison study.

MATERIALS AND METHODS
Markov Chain Random Field

The current major contents of MCG include the MCRF, the 
transiogram, and related simulation algorithms for dealing with dif-
ferent data types and information. The MCRF provides theoretically 
sound Markov-chain-based estimators (i.e., models) for conditional 
simulations on sample data. The transiogram was designed as a spa-
tial measure of MCRFs and provides a fl exible way for estimating 
transition probabilities with continuous lags from samples, which are 
needed by Markov chain conditional simulation models.

A MCRF refers to a random fi eld of a single Markov chain that 
moves (or jumps) in a one- or multidimensional space randomly or fol-
lowing a prescribed path (Li, 2007a). The state of such a Markov chain 
at an unknown location is decided by the interactions of the Markov 
chain with its nearest known neighbors in different directions. The use 
of a single chain, rather than conventional multiple chains, avoids the 
occurrence of unwanted transitions and consequently overcomes the 
small-class underestimation problem that occurred in simulated realiza-
tions of the triplex Markov model suggested by Li et al. (2004).

In a MCRF, a Markov chain may jump to anywhere and decide 
its current state by considering the infl uence of nearest known neigh-
bors in different directions. The conditional probability distribution 
(CPD) of a random variable Z at an unknown location u in a MCRF 
was derived (Li, 2007a) as
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 represents a transition probability in the ith direction 

from state k to state li with a lag hi; u1 represents the neighbor from 
or across which the Markov chain moves to the current location u; 
m represents the number of nearest known neighbors; k, li, and f all 
represent states in the state space S = (1, …, n); hi is the distance from 
the current location to the nearest known neighbor ui. With the lag 
h increasing from zero to a large number, any pkl(h) makes a transio-
gram—a transition probability diagram. Note that as a single-chain 
random fi eld, there is always a coming direction.

Equation [1] is the general solution of a MCRF. In real applications, 
it is not necessary to consider many nearest known neighbors in different 
directions (note that this is similar to the general solution of Markov random 
fi elds—the Gibbsian function, which is largely simplifi ed in real application 
models). Since the infl uence of remotely located data to the unknown loca-
tion to be estimated is normally screened by closer data within a certain 
angle, it is proper for MCRF-based specifi c Markov chain models to con-
sider only the nearest known neighbors in several cardinal directions within 
a search radius. Li (2007a) proved that the nearest known neighbors in car-
dinal directions are conditionally independent of each other in a Pickard 
random fi eld (Pickard, 1980) for the sparse-data situation. Thus, MCRF-
based Markov chain models that only consider nearest known neighbors in 
cardinal directions are mathematically correct.

If we consider four cardinal directions, it implies that at the initial 
simulation it is possible that we fi nd fewer than four nearest known neigh-
bors from a sparse sample data set in cardinal directions within a search 
radius. This situation is always true for boundary locations. For different 
numbers (i.e., 0–4) of nearest known neighbors found in cardinal directions 
(see Fig. 1), we can get all of those corresponding MCRF-based Markov 
chain models from the general solution as follows:

1. If four nearest known neighbors in cardinal directions are found 
within the search radius, that means m = 4 in Eq. [1]. Then 
the Markov chain model can be drawn from Eq. [1] as
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 where, h1, h2, h3, and h4 represent the distances from the 
unknown location u to its nearest known neighbors u1, u2, 
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u3, and u4 in the four cardinal directions, respectively; and 
k, l, m, p, and o represent the states of the fi ve locations u, 
u1, u2, u3, and u4, respectively. There is only one such case 
for four cardinal directions (see Fig. 1a).

2. If three nearest known neighbors in cardinal directions are found 
within the search radius, that means m = 3 in Eq. [1]. Then 
the Markov chain model can be drawn from Eq. [1] as
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 There are four such cases for four cardinal directions (see 
Fig. 1b).

3. If two nearest known neighbors in cardinal directions are found 
within the search radius, that means m = 2 in Eq. [1]. Then 
the Markov chain model can be drawn from Eq. [1] as
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 There are six such cases for four cardinal directions (see Fig. 1c).

4. If one nearest known neighbor in cardinal directions is found 
within the search radius, that means m = 1 in Eq. [1]. Then 
the Markov chain model can be drawn from Eq. [1] as
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 There are four such cases for four cardinal directions (see 
Fig. 1d).

5. If no nearest known neighbor in cardinal directions can be 
found within the search radius (see Fig. 1e), that means 
m = 0 in Eq. [1]. Then no Markov chain model is needed 
and we can choose the state of an unknown location 
randomly based on the proportions of all classes, which 
may be estimated from sample data or expert knowledge. 

With a proper choice of the search radius, such a situation 
normally does not occur in a simulation.

The Markov Chain Sequential Simulation Algorithm
For a randomly chosen unknown location in a simulation 

domain, its nearest known neighbors (sampled locations and previously 
simulated locations) may not lie exactly in the four orthogonal cardinal 
directions. Thus the so-called cardinal directions have to be distorted a 
little in this algorithm. Here we replace the four cardinal directions by 
four sectors of the search circle, each covering a quarter of the search 
circle, as shown in Fig. 2. That is, in each sector we look for a nearest 
known neighbor. These nearest known neighbors in the four sectors 
constitute the Markov chain model for estimating the unknown loca-
tion. In case there is no known location occurring in some sectors (e.g., 
at the beginning of simulation or on boundaries), the nearest known 
neighbors found will be less than four (e.g., Fig. 2, right).

Based on the above principles, the MCSS algorithm consists of 
the following steps:

Step 1: Set a proper search radius for a simulation and split the 
entire nodes (or pixels) of the discretized simulation domain 
into a known-location set and an unknown-location set.

Step 2: Randomly pick an unknown location from the 
unknown-location set.

Step 3: Search for at most four nearest known locations within 
the search circle, one from each sector of the search circle if 
there are known locations in the sector, as shown in Fig. 2.

Step 4: Estimate the CPD of the state of the unknown location 
using the corresponding Markov chain models provided 
in Eq. [2–5], depending on the number of nearest known 
neighbors found.

Step 5: Draw a specifi c state for the unknown location from the CPD.

Step 6: Add the newly simulated location into the known-
location set for conditioning in subsequent simulations of 
other unknown locations and delete it from the unknown-
location set.

Step 7: Repeat Steps 2 to 6 until all unknown locations are 
visited and every unknown location has been assigned a 
simulated value.

To some extent, the above simulation algorithm is similar to the 
SIS algorithm of indicator kriging. The differences are that here we 
use MCRF models, not kriging, for estimating unknown locations 
and we also limit the nearest known neighbors to, at most, four and 
choose one, at most, from each of the four equal sectors (i.e., quarters) 

Fig. 1. Possible neighborhoods within a search radius in a Markov 
chain random fi eld if only considering nearest known neigh-
bors in four cardinal directions: (a) four known neighbors; 
(b) three known neighbors; (c) two known neighbors; (d) one 
known neighbor; and (e) no known neighbors. The white cell 
represents the unknown one to be estimated and black cells 
represent known data locations in cardinal directions.

Fig. 2. The search circle, search sectors, and the considered neigh-
borhoods of nearest known neighbors. The search circle is 
divided into four equal search sectors. Left: four nearest known 
neighbors are found, one from each sector. Right: two nearest 
known neighbors are found because the other two sectors have 
no known data locations.
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of the search circle. As to how to choose the search radius, it is a deci-
sion of users based on the density of their samples, and it should avoid 
using such a small search radius that the search circle frequently covers 
no nearest known neighbor at the initial stage of a simulation.

Transiogram Modeling
The transiogram concept was introduced in Li (2006) and a sys-

tematical introduction was provided in Li (2007b). Here a brief intro-
duction is provided. Theoretically, a transiogram is defi ned as a two-
point transition (or conditional) probability function over the lag h:

( ) ( ) ( )Pr |ijp h Z x h j Z x i⎡ ⎤= + = =⎣ ⎦  [6]

where Z is a random variable and x represents one specifi c location. 
Assuming Z is spatially stationary, we have  pij(h) dependent only on 
the lag h and not dependent on the specifi c location x. An autotran-
siogram pii(h) represents the self-dependence (i.e., auto-correlation) 
of a single class i and a cross-transiogram pij(h) (i ≠ j) represents the 
cross-dependence of class j on class i. Here class i is called a head class 
and class j is called a tail class. Practically, a transiogram can be directly 
estimated from sample data by counting the transition frequency from 
a class to itself or another class with different lags (e.g., numbers of 
pixels for raster data) by the following equation:
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where Fij(h) represents the frequency of transitions from class i to class j at 
the lag h, and n is the total number of classes. Such a transiogram is called 
an experimental transiogram. For sparse samples, to acquire reliable experi-
mental transiograms, the lag h has to consider a tolerance width Δh around 
it, which may be decided by users according to the density of samples. If 
anisotropies are considered, experimental transiograms have to be estimated 
directionally with or without a tolerance angle, similar to estimation of var-
iograms. In addition, if one-step transition probabilities are available, tran-
siograms can also be calculated from one-step transition probabilities based 
on the stationary fi rst-order Markovian assumption, and such transiograms 
are called idealized transiograms (Li, 2006).

Experimental transiograms estimated from limited samples 
are normally scattered points and therefore cannot be used directly 
in simulations. There are two methods to acquire continuous tran-
siogram models. The fi rst one uses mathematical models to jointly 
fi t experimental transiograms (Li and Zhang, 2006). This method 
is time consuming when the number of classes is large, but it per-
mits incorporation of expert knowledge in estimation of transiogram 
models. Here expert knowledge refers to the knowledge of experts in 
parameter estimation of transiogram models, which typically include 
sills, ranges, and model types (e.g., exponential, spherical). Therefore, 
this method is more fl exible and widely applicable, particularly when 
samples are sparse and cannot provide accurate experimental transio-
grams. The second method interpolates experimental transiograms 
into continuous models (Li and Zhang, 2005). This method is effi -
cient but eliminates the chance of incorporating expert knowledge. 
Therefore, this method is suitable only when samples are suffi cient 
and experimental transiograms are reliable.

In this study, for the algorithm testing purpose, the interpolation 
method for acquiring transiogram models was applied to avoid parameter 
uncertainty caused by the introduction of subjective expert knowledge. 
The linear interpolation method is given as the following equation:
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where A and B are the values of two neighboring points in an experimental 
transiogram, DA and DB are the corresponding lags of the two neighbor-
ing points with DB > DA, and X is the value to be interpolated at a lag DX 
between DA and DB. Interpolated transiogram models using Eq. [8] nor-
mally can meet the constraint conditions for the Markov chain simulation.

Incorporation of Expert Knowledge in 
Transiogram Modeling

Expert knowledge is useful in improving the quality of transiogram 
models when mathematical models (see Li and Zhang, 2006) are used to 
fi t unreliable experimental transiograms estimated from insuffi cient sample 
data. Besides directly related expert knowledge about parameters (e.g., sill, 
range, model type, etc.) of transiogram models, indirectly related expert 
knowledge about studied soil classes (e.g., proportions, polygon sizes, juxta-
positions) in the study area and information from similar areas is also impor-
tant. The expert knowledge may be fi nally embodied in the parameters of a 
set of transiogram models. The relationships between the expert knowledge 
and transiogram model estimation are briefl y discussed as follows:

1. Proportions. With decreasing numbers of samples, the 
proportion of a class in the sample data set deviates from 
the correct proportion of the class in the study area. In this 
situation, expert knowledge in the proportion of the class is 
crucial in setting the correct sills of transiogram models tailed 
by the class. As shown in Li and Zhang (2006), the sill of a 
transiogram model pij(h) may be set to the proportion pj of 
the tail class j; this is because the sill of pij(h) is theoretically 
equal to the proportion of tail class j (Carle and Fogg, 1997).

2. Mean lengths. The mean length iL  (i.e., mean polygon 
size) of parcels of a class is theoretically related to 
the slope of the idealized autotransiogram pii(h) at 
the beginning point [i.e., point (0, 1)] (Carle and 
Fogg, 1997; Li, 2006). This property is applicable 
to transiogram models. So if the mean length of 
parcels of a class can be assessed (e.g., estimated by 
expert knowledge or from a training image), one may 
determine the change gradient of the autotransiogram 
model of the class at the beginning point. If the 
approximate correlation range is also known, the 
autotransiogram model may be approximately inferred 
because autotransiograms usually tend to be exponential 
distribution curves.

3. Correlation range. The relationship between 
autocorrelation range ai, mean length, and proportion 
can be generalized as

( )1 ii ia p L= φ −  [9]

 where φ  = 1, 1.5, or 3 for linear, spherical, or exponential 
autotransiogram models (Ritzi, 2000). So if the parcel mean 
length, class proportion, and the transiogram curve shape 
(corresponding to transiogram model type) are known, one 
can obtain the auto-correlation range.

4. Juxtaposition. If two soil types often occur as neighbors, their 
cross-transiograms should have a peak at the low lag section. 
On the contrary, if two soil types often appear distantly, 
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their cross-transiograms should have low values at the low 
lag section (Li, 2006). This expert knowledge may also 
be incorporated into transiogram modeling with suitable 
mathematical models.

5. Domain knowledge. For specifi c soil types, related transiograms 
may have similar characteristics in similar natural 
environments. By estimating transiograms from similar 
areas with exhaustive maps or detailed survey data, one can 
build a knowledge base about common characteristics of 
transiograms of specifi c soil types. This can also be used to 
guide the inference of transiogram models for applications.

In general, if the autocorrelation range, the parcel mean length, and 
the proportion of a class are known, one can defi ne a basic autotransi-
ogram model. Correlation ranges and transiogram model types may be 
approximately assessed from experimental transiograms. Because cross-
transiograms are typically more complex than autotransiograms in curve 
shapes, it is particularly necessary to estimate cross-correlation ranges aij 
and general shapes of cross-transiograms from measured data, training 
maps, available abundant data in similar areas, and expert knowledge in 
juxtaposition situations of studied classes.

Because Markov chain models always consider interclass relation-
ships through cross transition probabilities (or cross-transiogram models), 
it is possible to capture a minor class missed in sampling but confi rmed by 
experts familiar with the study area. The requirement is that there must 
be suffi cient available expert knowledge in proportion, parcel mean length, 
and spatial distribution characteristics (e.g., juxtaposition relationships with 
other classes) of the minor class, because with that expert knowledge a set 
of transiogram models related to the minor class may be inferred approxi-
mately. Correspondingly, because of the addition of the minor class, transi-

ogram models (usually model sills) of some other classes should be adjusted 
to meet the summing-to-one condition in joint modeling of transiogram 
models (see Li and Zhang, 2006).

Sequential Indicator Simulation
Indicator kriging was proposed by Journel (1983). Sequential indica-

tor simulation is an effi cient IK simulation algorithm for indicator variables 
(cutoffs or thresholds of continuous variables and categorical variables). It 
has been widely used and well documented in literature (e.g., Goovaerts, 
1997, p. 376–378). Therefore, it is not necessary to introduce them repeat-
edly here. Sequential indicator simulation may use either simple indicator 
kriging (SIK) or OIK (Goovaerts, 1997, p. 293–297) as its estimator. The 
difference between SIK and OIK is that SIK considers the indicator mean 
known and constant across the whole study area, while OIK allows one to 
account for local variation of the indicator mean by limiting the domain of 
stationarity of the mean to the local neighborhood centered on the location 
being estimated. Since OIK is generally superior to SIK, in this study we 
uses SIS with OIK (i.e., SISoik), rather than SIS with SIK, to conduct simu-
lations and compare simulated results with those generated by the proposed 
MCSS algorithm.

Thus far cokriging has been mainly used for incorporating second-
ary variables (see Goovaerts, 1997, p. 203–258; Deutsch, 2006). To our 
knowledge, existing SIS algorithms (and related software) do not support 
indicator cokriging simulation of multinomial classes (see Deutsch, 2006). 
This could be caused by several reasons: (i) the indicator cokriging system 
for categorical variables cannot be solved as it is typically expressed due to 
the diffi culty in defi ning a valid linear model of coregionalization for auto- 
and cross-variograms of multiple classes and thus it reduces to an IK system 
(see Bogaert, 2002, p. 430); or (ii) solving a large indicator cokriging equa-

tion system is also diffi cult because of demanding computation time, 
order relation deviation, and numerical instability (Goovaerts, 1996). In 
SIS, therefore, classes are typically estimated one after another; that is, 
when one class is estimated, data belonging to the class are coded as 1 
and other data are coded as 0. So data belonging to other classes do not 
make contributions to the estimate of the current class at an unknown 
location to be estimated.

While SIS deals with single classes one by one, MCG algorithms 
always manage all involved classes simultaneously with consideration of 
cross-relationships between classes. Similar to SIK, MCRF models used 
in this study consider the indicator mean of each class constant across the 
whole study area (note that the indicator mean of a class is refl ected in the 
height of the transiograms tailed by the class). As a nonlinear approach, 
however, MCRF models determine the conditional probability distri-
bution of a random variable at an unknown location based on transi-
tion probabilities between the unknown location and its nearest known 
neighbors in several cardinal directions (or sectors).

Data Sets and Parameters
A 9-km2 area in the fl oodplain in northeastern Iowa County, 

Wisconsin, was chosen for a case study. The study area has seven soil 
classes (i.e., soil series) with the following names: 1, loamy alluvium; 2, 
Sparta; 3, Plainfi eld; 4, Dakota; 5, Richwood; 6, others (e.g., water); 
and 7, peat and muck. The soil map of Iowa County (in which the 
map unit is the soil phase) can be downloaded from the NRCS Soil 
Data Mart website (SoilDataMart.nrcs.usda.gov/, verifi ed 9 Jan. 
2007). Soil phases were merged into soil series in this study because 
this classifi cation level is determined by pedogenetic properties. The 
clipped soil series map of the study area, shown in Fig. 3, served as 
a reference map to validate simulated results. This means that we 

Fig. 3. The reference soil map of seven soil classes and randomly distributed sam-
ple data sets (dense: 646 points, 2.9% of total pixels; medium: 179 points, 
0.8% of total pixels; sparse: 50 points, 0.2% of total pixels). The seven soil 
classes (soil series) include: 1, loamy alluvium; 2, Sparta; 3, Plainfi eld; 4, 
Dakota; 5, Richwood; 6, others (e.g., water); and 7, peat and muck.
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assumed the reference map is correct (i.e., delineated on a detailed fi eld sur-
vey), and it may be impossible to acquire sucha  reference map in real world 
applications. The study area was discretized into a grid of 22 400 (175 by 
128) pixels, with a pixel size of 20 by 20 m.

From the reference soil map, we sampled three data sets randomly: 
a dense one of 646 points (2.9% of total pixels), a medium one of 179 
points (0.8% of total pixels), and a sparse one of 50 points (0.2% of total 
pixels) (Fig. 3). In fact, all three data sets are “sparse” samples, and the sparse 
sample data set is even too sparse to estimate transiogram models from. 
The terms dense, medium, and sparse are used to differentiate the three data 
sets based on their relative densities. Using these three different data sets, 
we may examine the simulated results conditioned on different densities of 
samples and verify the practicality of the proposed algorithm.

Figure 4 shows three subsets of omnidirectional experimental tran-
siograms headed by Class 1, estimated from each of the three data sets. It 
can be seen that the three subsets of experimental transiograms estimated 
from different data sets look similar in their shapes. Experimental tran-
siograms estimated from the sparse and medium datasets are less reliable, 
however, because they are composed of fewer transition probability value 
points, which have to be estimated by using a larger tolerance width. In 
addition, because Soil Class 5 does not appear in the sparse sample data 
set, transiogram p15(h) cannot be estimated from the sparse data set. So 
in simulations conditioned on all three sample data sets, we used only the 
transiogram models estimated from the dense data set, which include Class 
5. This means that we used more correct transiogram models in simula-
tions than we can acquire through fi tting the experimental transiograms 
estimated from the corresponding sample data sets, and this can be justifi ed 
by assuming that we have suffi cient expert knowledge to adjust the transio-
gram models acquired directly from sparser data sets, as mentioned above.

Soil Class 5 is the smallest class in the study area. In the medium 
sample data sets, the class has only one point, and in the sparse sample data 
set, this class completely disappears. This means that as a minor class, it is 

missed in sampling for the sparse sample data set. In real world applica-
tions, this missing minor class is usually ignored if its existence is unknown. 
But sometimes we may want to capture it in a simulation if its existence is 
known in the study area by the experience and domain knowledge of soil 
experts. This is possible in the MCSS algorithm by using a set of auto- 
and cross-transiogram models including the missing minor class, which of 
course have to be estimated by using expert knowledge to provide param-
eters for the transiogram models (e.g., sill, range, and model type; Li and 
Zhang, 2006). This means all transiogram models that involved the missing 
class have to be defi ned by expert knowledge, as discussed above. Because in 
this study we have accurate transiogram models estimated from the dense 
data set, which includes the minor class, we can use them directly in the 
conditional simulation on the sparse data set and test whether a minor 
class missed in sampling can be captured in simulated realizations using 
the MCSS algorithm. Thus, we need not infer related transiogram models 
from expert knowledge. In addition, for the purposes of algorithm testing 
and comparison, it is also preferable to use objective parameters.

In this study, we used omnidirectional transiograms for simplicity, 
which means we did not consider anisotropies of soil classes in the study 
area. Transiogram models were obtained using the interpolation approach. 

Fig. 4. Experimental transiograms headed by Soil Class 1, estimated 
from each of the three sample data sets: (a) from the dense 
data set; (b) from the medium data set; and (c) from the sparse 
data set. Note that estimated points for each experimental 
transiogram are connected as a line so that different experi-
mental transiograms can be readily differentiated.

Fig. 5. A subset of experimental transio-
grams (dots) headed by Class 1, esti-
mated from the dense data set, and 
interpolated models (solid lines).

Table 1. Indicator autovariogram models of the seven soil classes 
in the study area, estimated from the dense data set (646 
random points).

Soil type Model Nugget Sill Range
no. of pixels

1 exponential 0.00 1.35 55
2 exponential 0.10 1.05 55
3 exponential 0.20 1.02 27
4 exponential 0.25 1.05 35
5 spherical 0.20 1.00 20
6 exponential 0.25 1.08 40
7 power† 0.00 0.17 (c) 0.4 (ω)

† Power model has no sill and range; here c is the positive slope 
and ω is the power (Deutsch and Journel, 1998, p. 25).
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Figure 5 displays a subset of transiogram models headed by Class 1, acquired 
from the experimental transiograms of the dense data set.

To conduct simulations on the same data sets using SISoik, omni-
directional indicator variogram models were estimated from the data sets. 
For the same reasons, simulations used the indicator variogram models 
estimated from the dense data sets. Because cross-variograms were not 

used in simulations, only experimental 
indicator autovariograms were model fi t-
ted. Table 1 provides parameters for the 
seven indicator autovariogram models.

Outputs and Indices
The search radii chosen in simula-

tions were 30, 50, and 50 pixel lengths 
(i.e., 600, 1000, and 1000 m) for the 
dense, medium, and sparse data sets, 
respectively. A relatively larger radius 
is necessary for the medium and sparse 
data sets because of the sparseness of 
samples. One hundred realizations were 
generated for each of the simulations 
on the three data sets using MCSS and 
SISoik, and occurrence probability maps 
for each simulation were estimated from 
those realizations. Optimal prediction 
maps were obtained from the maximum 
occurrence probability maps. Some indi-
ces are necessary to test the suitability 
and advantages of the MCSS algorithm. 
Except for visual maps, the following 
indices were used in this study:

PCC: Percentage of correctly classifi ed 
locations. Average PCC values 
were estimated from 100 simulated 

realizations against the reference map.

AMP: Averaged maximum occurrence probability. The 
AMP values were estimated from maximum occurrence 
probability maps.

TPM: One-step transition probability matrix. The TPMs were 
estimated from simulated realizations 
and input transiogram models.

Simulated transiogram: Simulated 
transiograms were estimated from 
single realizations.

Proportion: Averaged proportions 
of classes were estimated from 100 
realizations for each simulation.

RESULTS AND 
DISCUSSION
Simulated Results

Some simulated results using 
MCSS conditioned on the three 
different random sample data 
sets are shown in Fig. 6, 7, and 8, 
respectively. Apparently, both the 
optimal prediction map (Fig. 6a) 
and simulated realizations (Fig. 6b 
and 6c) conditioned on the dense 
data set effectively captured the 
spatial patterns of the seven soil 
classes. Optimal prediction maps 
(Fig. 7a and 8a) and simulated 
realizations (Fig. 7b, 7c, 8b, and 
8c) conditioned on the medium 

Fig. 6. Simulated results by Markov chain sequential simulation, conditioned on the dense data set: (a) opti-
mal prediction map; (b) and (c) two simulated realizations; (d) maximum occurrence probability map; 
(e) occurrence probability map of Class 1; (f) occurrence probability map of Class 4.

Fig. 7. Simulated results by Markov chain sequential simulation, conditioned on the medium data set: (a) 
optimal prediction map; (b) and (c) two simulated realizations; (d) maximum occurrence probability 
map; (e) occurrence probability map of Class 1; (f) occurrence probability map of Class 4.
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and sparse data sets generated relatively 
simplifi ed soil patterns because samples 
were sparser. Optimal prediction maps 
normally have a smoothing effect, so 
they may not refl ect the true spatial het-
erogeneity of simulated classes and small 
classes may be underrepresented because 
of their lower occurrence probabilities 
at most unsampled locations. A simu-
lated realization may represent a possible 
“reality” of the spatial distribution of the 
studied classes, however, based on the 
input statistics and sample data.

From Fig. 9a, it can be seen that 
all classes were fairly reproduced in 
simulated realizations conditioned on 
the dense data set. Clearly, the small-
class underestimation problem and 
the large-class overestimation problem 
that occurred in simulated realizations 
from the multiple-chain-based triplex 
Markov chain model did not occur 
here. On the contrary, it seems that the 
smallest class was overestimated a little 
in this case study. In fact, it is impossi-
ble and unnecessary to exactly reproduce the class proportions 
of samples. This is because the class proportions in simulated 
realizations represent a reconciliation result of many factors. 
Both conditioning data and transiogram models play roles in 
determining the class proportions in realizations. In addition, 
the boundary effect also has its contributions to class propor-
tions in simulated realizations. Here the boundary effect means 
that samples close to boundaries of the study area are less uti-
lized than those in the center of the study area in both transio-
gram estimation and simulations.

Transiograms estimated from simulated realizations (the 
fi rst 10 realizations were selected for each simulation) condi-
tioned on the dense and medium sample data sets are provided 
in Fig. 10 and 11, respectively. It can be seen that all experi-
mental auto- and cross-transiograms (and transiogram models) 
are well reproduced by simulated realizations, except for those 
related to the minor Class 5. It is normal that, when samples are 
sparser, simulated transiograms have more fl uctuations around 
the input ones due to the existence of more spatial uncertainty. 
This is called ergodic fl uctuation in stochastic process theories, 
referring to the discrepancy between realization statistics and 
corresponding model parameters (Deutsch and Journel, 1998, 
p. 128–132). Therefore, it can be concluded that simulated 
realizations of MCSS effectively refl ect the heterogeneity of the 
studied classes and the inherent uncertainty of their spatial dis-
tribution resulting from incomplete observations.

The occurrence probability maps of single classes indicate 
where and with how much certainty a class may occur, and 
the maximum occurrence probability maps demonstrate the 
spatial uncertainty associated with each optimal prediction 
map. From Fig. 6d, 7d, and 8d, one can see that the “transition 
zones” (the white-gray stripes), which indicate the locations 
where predicted results from the samples have lower confi dence 
than at other places, are demonstrated clearly in the maximum 

occurrence probability maps. These transition zones represent 
the approximate locations of polygon boundaries. Obviously, 
spatial uncertainties increase with decreasing density of sam-
ples, as shown by the increasing fuzziness of probability maps 
in Fig. 6, 7, and 8. Consequently, with decreasing numbers 
of samples, the patterns of optimal prediction maps become 
simpler and simulated realizations are less imitative of the ref-
erence map and of each other (see realizations in Fig. 6, 7, and 
8).

Fig. 8. Simulated results by Markov chain sequential simulation, conditioned on the sparse data set: (a) 
optimal prediction map; (b) and (c) two simulated realizations; (d) maximum occurrence prob-
ability map; (e) occurrence probability map of Class 1; (f) occurrence probability map of Class 4.

Fig. 9. Proportions of classes in sample data sets and simulated real-
izations (averaged from 100 realizations) generated by Markov 
chain sequential simulation.
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Checking the simulated realizations, one can fi nd that the 
MCSS algorithm generated polygon features with smooth bound-
aries in simulated realizations, no matter how sparse the condi-
tional data set was. The polygon features of these realizations are in 

accordance with those of human-made area-class 
soil maps. This is interesting since our simulations 
are pixel based, not object based.

Despite not being contained in the sparse 
sample data set, Class 5 was still generated as 
neighbors of Class 1 in realizations condi-
tioned on the sparse data set (see Fig. 8c). This 
is because the transiogram models used in the 
simulation included Class 5. This means that 
MCSS can capture a class that is missed in sam-
pling, but assured by expert knowledge, merely 
through parameter inputs (i.e., transiogram 
models). This characteristic is useful for simu-
lating multinomial classes with crucial minor 
classes from sparse samples based on suffi cient 
expert knowledge. This is impossible to achieve, 
however, in simulation methods that only con-
sider autocorrelations.

In addition, some class pairs such as Class 7 
and Class 4 have little or no chance to be neigh-
bors in the reference map. This characteristic of 
Classes 7 and 4 is also refl ected in the dense sam-
ple data set and further refl ected on their cross-
transiogram models (see Fig. 12). Checking sim-
ulated realizations (and optimal prediction maps) 
conditioned on all three of the data sets (see Fig. 
6, 7, and 8), it can be seen that Classes 7 and 
4 indeed never occur as neighbors. This means 

that simulated realizations by MCSS obey the 
interclass relationship rules defi ned by cross-transiogram mod-
els. Conventional geostatistics that do not incorporate interclass 
relationships may not follow the rules, however.

Comparison with Indicator Kriging
To verify the effectiveness and advantages 

of a new approach, an appropriate method is 
to compare it with an existing, widely accepted 
approach. Here we chose the popular IK simula-
tion algorithm SISoik as a reference, which was 
often cited as a potential candidate for simulat-
ing categorical variables and has been used in 
some case studies (e.g., Bierkens and Burrough, 
1993; Goovaerts, 1996).

Figures 13, 14, and 15 show simulated results 
using SISoik conditioned on the three different 
random data sets, respectively. Visually com-
paring the optimal prediction maps with those 
generated by MCSS, it is diffi cult to tell their 
differences. Based on the reference soil map, we 
calculated their PCC values (Table 2). Although 
the absolute differences (0.3, 1.3, and 2.3% for 
the dense, medium, and sparse data set cases) of 
PCC values of the optimal prediction maps from 
the two approaches are not obvious, PCC values 
of the optimal prediction maps from MCSS are 
generally higher than those from SISoik, which 
means that MCSS can predict more correctly. 
The absolute differences of PCC values of simu-
lated realizations from the two approaches are 

Fig. 10. Transiograms estimated from 
single realizations generated by 
Markov chain sequential simula-
tion, conditioned on the dense 
data set.

Fig. 11. Transiograms estimated from single 
realizations generated by Markov chain 
sequential simulation, conditioned on 
the medium data set.
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indeed obvious, however. The PCC values averaged from 100 
MCSS realizations are 6.0, 5.9, and 2.5% higher than those 
from SISoik realizations for the dense, medium, and sparse 
data set cases, respectively. The relative difference in PCC 
values between realizations of the two methods even reached 
9.9% for the medium sample data set. These results indicate 
that MCSS may better capture soil classes at their approximate 
locations and generate more accurate realizations.

While optimal prediction maps from the two approaches have 
no signifi cant differences, surprisingly it can be found that their cor-
responding maximum occurrence probability maps are very differ-
ent. Comparing Fig. 6d, 7d, and 8d with Fig. 13d, 14d, and 15d, 
respectively, one can see that the maximum occurrence probability 
maps from SISoik are apparently fuzzier than those from MCSS. 
Figure 16 shows the AMP values generated by the two approaches. 
The AMP values from MCSS are obviously larger than those from 
SISoik. Checking the occurrence probability maps of single classes, 
we can reach a similar conclusion: MCSS generates less spatial 
uncertainty than SISoik.

An obvious difference between realizations generated by 
MCSS and SISoik is that the latter generates dispersed features 
while the former generates polygon features. While it may be 
arguable to say which kind of feature better represents soil type 
spatial distribution, the polygon feature is apparently more 
useful for area-class mapping and also in accordance with the 
soil mapping convention.

Looking at Classes 7 and 4 in simulated realizations (and 
optimal prediction maps) generated by SISoik, one can fi nd 
that they can be neighbors (see Fig. 14 and 15). This obviously 
violates their non-neighbor rule defi ned by sample data and 
expert knowledge (here the reference map). One-step TPMs 
can refl ect the neighboring relationships in one spatial step 
(i.e., one pixel) between classes by cross-transition probabili-
ties and the polygon sizes of single 
classes by autotransition prob-
abilities. Table 3 shows some esti-
mated and simulated TPMs. The 
fi rst TPM in Table 3 was extracted 
from the input transiogram mod-
els. Comparing it with those esti-
mated from realizations simulated 
by MCSS and SISoik, one can 
fi nd that MCSS approximately 
reproduced the one-step TPM, 
but SISoik generally decreased 
autotransition probabilities and 
exaggerated cross-transition prob-
abilities. Obviously, the poor 
reproduction capability of SISoik 
in one-step TPMs is related to the 
dispersed patterns normally gener-
ated in realizations.

From the simulated realiza-
tions generated by SISoik condi-
tioned on the sparse data set (see 
Fig. 15), one cannot fi nd the minor 
Class 5. In fact, it is not possible 
for SIS to capture a class missed in 

sampling because it does not incorporate cross-correlations 
between classes in simulation.

As a MCRF-based random-path simulation algorithm, 
MCSS has demonstrated its practicality in simulating soil classes. 
MCSS obeyed interclass relationships and generated more accu-
rate realizations than SISoik did in our simulation cases. This 
should be related to two reasons. First, MCSS considers both 
autocorrelations and interclass relationships in simulations. This 

Fig. 12. The interclass relationships between Class 4 and Class 7, es-
timated from the dense data set. They have no or little chances 
to be neighbors.

Fig. 13. Simulated results by sequential indicator simulation with ordinary kriging, conditioned on the dense 
dataset: (a) optimal prediction map; (b) and (c) two simulated realizations; (d) maximum occurrence 
probability map; (e) occurrence probability map of Class 1; (f) occurrence probability map of Class 4.
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means it incorporates more spatial heterogeneity information 
than SISoik does, because the latter considers only autocorre-
lations and does not consider interclass relationships. Second, 
the estimator of MCSS is generally nonlinear (i.e., the nearest 
known neighbors found in the four search sectors in a simula-
tion process are usually more than one and thus make nonlin-
ear models); however, the OIK estimator is still linear (Bogaert, 

2002). Nonlinear estimators should 
be preferable for simulation of cate-
gorical variables because categorical 
data are nonlinear.

CONCLUSIONS
A MCSS algorithm was devel-

oped for conditional simulation 
and spatial uncertainty analysis of 
categorical soil variables from ran-
dom point samples. Its suitability 
was demonstrated by a case study 
on three randomly distributed 
sample data sets of soil types. The 
algorithm extended Markov chains 
into a widely applicable geostatisti-
cal approach for two-dimensional 
simulation of categorical variables.

By comparing the simulated 
results from MCSS and those from 
the popularly used indicator krig-
ing simulation algorithm SISoik, 
we found that MCSS had the fol-
lowing advantages:

1. The MCSS generated obviously 
fewer spatial uncertainties associated 

with simulated results and more accurate simulation 
results than SISoik did. Average PCCs of realizations from 
MCSS were 6% or so in absolute values (9% or so in 
relative values) higher than those from SISoik for normal 
sampling densities.

2. The MCSS captured more effectively the complex patterns 
of soil classes and obeyed their complex interclass 

relationships. For example, non-
neighboring classes did not occur as 
neighbors in simulated realizations.

3. The MCSS directly generated 
polygon features in realizations, and 
this is in accordance with the style 
of area-class soil maps. The SISoik 
algorithm, however, generated 
relatively dispersed patterns in 
realizations. This makes MCSS a 
suitable approach for predictive 
area-class mapping and for spatial 
uncertainty (i.e., error) estimation of 
area-class maps.

4. The MCSS could generate classes 
in realizations that were missed 
in sampling but confi rmed by 
expert knowledge. This is because 
it considers cross-correlations 
in simulation. Methods that 
only consider autocorrelations 
in simulation do not have such 
capability.

Although interclass relation-
ships are effectively incorporated, 
MCSS is still computationally effi -
cient because it does not need to 

Fig. 14. Simulated results by sequential indicator simulation with ordinary kriging, conditioned on the medium 
dataset: (a) optimal prediction map; (b) and (c) two simulated realizations; (d) maximum occurrence 
probability map; (e) occurrence probability map of Class 1; (f) occurrence probability map of Class 4.

Fig. 15. Simulated results by sequential indicator simulation with ordinary kriging, conditioned on the sparse 
dataset: (a) optimal prediction map; (b) and (c) two simulated realizations; (d) maximum occurrence 
probability map; (e) occurrence probability map of Class 1; (f) occurrence probability map of Class 4.
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solve complex equation systems. Similar to SIS, MCSS gener-
ates realizations in a one-pass way. Since modern geostatistics 
emphasize stochastic simulation (i.e., getting multiple simu-
lated realizations for uncertainty assessment) rather than inter-
polation (i.e., getting a single optimal map; Goovaerts, 1997, 
p. viii; Chiles and Delfi ner, 1999), the advantage of MCSS in 
generating more accurate realizations and class patterns of mul-
tinomial classes is especially signifi cant. It can be concluded, 
therefore, that MCSS provides a powerful spatial statistical 
tool for prediction and simulation of categorical variables and 
it is particularly suitable for simulating area-class maps of soil 
spatial variables.

One practical simulation algorithm based on MCRF was 
provided here, and there may be other ways of conducting con-
ditional simulations using MCRF. For example, the simulation 
algorithm proposed in Li and Zhang (2006) for dealing with 
grid point samples, which suggested fi rst 
interpolating sample points into a net-
work and then fi lling in meshes one after 
another, may simply be applied to MCRF 
models and potentially may also work 
with random samples with an intensively 
developed software tool. Future expan-
sion of MCG and the MCSS algorithm 
should consider three-dimensional simu-
lation, incorporation of secondary data, 
nonstationarity, and the time dimension.

In addition, the MCRF theory is also 
fl exible in cardinal directions; three or 
more than four cardinal directions may be 
considered in algorithm design. Thus, a 
more fl exible MCSS algorithm with opti-
mal numbers of search sectors for differ-
ent densities of samples may be proposed 
in the future.
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