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Abstract Estimating and mapping spatial uncertainty of

environmental variables is crucial for environmental eval-

uation and decision making. For a continuous spatial var-

iable, estimation of spatial uncertainty may be conducted in

the form of estimating the probability of (not) exceeding a

threshold value. In this paper, we introduced a Markov

chain geostatistical approach for estimating threshold-

exceeding probabilities. The differences of this approach

compared to the conventional indicator approach lie with

its nonlinear estimators—Markov chain random field

models and its incorporation of interclass dependencies

through transiograms. We estimated threshold-exceeding

probability maps of clay layer thickness through simulation

(i.e., using a number of realizations simulated by Markov

chain sequential simulation) and interpolation (i.e., direct

conditional probability estimation using only the indicator

values of sample data), respectively. To evaluate the

approach, we also estimated those probability maps using

sequential indicator simulation and indicator kriging

interpolation. Our results show that (i) the Markov chain

approach provides an effective alternative for spatial

uncertainty assessment of environmental spatial variables

and the probability maps from this approach are more

reasonable than those from conventional indicator geosta-

tistics, and (ii) the probability maps estimated through

sequential simulation are more realistic than those through

interpolation because the latter display some uneven tran-

sitions caused by spatial structures of the sample data.

Keywords Environmental evaluation � Geostatistics �
Spatial uncertainty � Transiogram

1 Introduction

In environmental modeling, estimating the probability of

an environmental spatial variable (not) exceeding a

threshold (or cutoff) value is an effective method for spatial

(i.e., locational) uncertainty assessment, which is cru-

cial for environmental evaluation and decision making

(Goovaerts 1997; Chiles and Delfiner 1999; Gaus et al.

2003; Arbia et al. 2007). For example, some threshold

values of soil attributes, such as soil lead content, soil water

content or soil clay content, may be critical standards for

judging the quality (e.g., severely polluted, moderately

polluted, or not polluted) or identifying the cropping suit-

ability of the land under study (Goovaerts et al. 1997;

Goovaerts 2001). Thus, the probability map of an impor-

tant attribute (not) exceeding a threshold value will provide

crucial quantitative information to policy makers for

deciding remediation measures and to researchers for

effectively studying related phenomena and processes (van

Meirvenne and Goovaerts 2001; Lark and Ferguson 2004;

Schnabel et al. 2004; Yang et al. 2008). In addition, esti-

mating a series of threshold-exceeding probabilities is also

the way used to construct the cumulative conditional

probability distribution of a continuous spatial variable at

an unsampled location for simulating the continuous
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variable using Sequential Indicator Simulation (SIS)

(Journel and Isaaks 1984; Deutsch and Journel 1998;

Goovaerts 1999; Wang et al. 2002; Jager et al. 2005).

There are a variety of spatial statistical approaches

which may be used for estimating threshold-exceeding

probabilities, such as indicator kriging (Journel 1983),

disjunctive kriging (Armstrong and Matheron 1986), gen-

eralized linear model (Gotway and Stroup 1997), and

clipped Gaussian random fields (de Oliveira 2000). Among

these approaches, indicator kriging has been more

frequently used in applications in environmental sciences

due to its computational efficiency and well implementa-

tion in software. Application studies may be found in

Goovaerts et al. (1997), van Groenigen et al. (1997),

Atkinson (1999), Brus et al. (2002), Juang et al. (2004),

Lark and Ferguson (2004), and others. But it is also known

that this approach has some caveats, such as no guarantee

that estimated probabilities lie in [0, 1]. It was argued that

‘‘most indicator kriging applications rely on a flawed

probabilistic model’’. The effects of using such flawed

model on inference about the binary map are unclear (de

Oliveira 2000). For estimating the probability of a con-

tinuous spatial variable Z not exceeding a threshold value

k, the common way is to define an indicator (or binary)

variable on the threshold as a function of the variable under

study, with one indicator value being 1 for Z B k and the

other being 0 for Z [ k.

Indicator kriging was initially proposed by Switzer

(1977) for estimation of the distribution function of a sta-

tionary random field, and later extended by Journel (1983)

as a non-parametric method for prediction in random fields

and used by Solow (1986) for prediction in binary random

fields (de Oliveira 2000). This approach was well explored

and implemented in geostatistics (Deutsch and Journel

1998). In Goovaerts (1997), two indicator kriging based

methods (or strategies) were introduced for estimating

threshold-exceeding probabilities: one is to estimate the

probability directly from sample data using indicator kri-

ging (IK)—an IK-based interpolation method; the other is

to estimate the probability from a set of simulated realiza-

tions generated by SIS—a SIS-based stochastic simulation

method. Note that SIS is a sequential simulation algorithm

based on IK (i.e., it uses IK models as its estimators).

Although we found no literature in studying their differ-

ences in estimated results, the latter method was usually

thought to be more reasonable, as simulated realizations by

sequential simulation algorithms are generally regarded as a

representation of joint uncertainty about the attribute’s

values at multiple locations or in an area. For example,

recently Juang et al. (2004) used SIS to assess the spatial

uncertainty of heavy metal Cu concentration in soils, and

Zhao et al. (2005) used the same method to assess the spatial

uncertainty in soil organic carbon density mapping.

Recently, Markov chain geostatistics (MCG) (Li 2007a)

was proposed as a new idea for simulating categorical

spatial variables, such as soil types, layers and textural

classes. Although it is only preliminarily developed, this

approach has demonstrated some apparent advantages

(e.g., higher accuracy) over SIS in simulation of soil types

(Li and Zhang 2007). Except for using nonlinear estima-

tors, the major differences of the MCG approach compared

to conventional indicator kriging geostatistics include:

(i) incorporating various interclass relationships (e.g.,

cross-correlations, juxtapositions, asymmetric sequences)

through a transition probability-based asymmetric spatial

correlation measure—transiogram; (ii) avoiding the well-

known shortcomings encountered in conventional indicator

kriging geostatistics (e.g., estimated probabilities may

show order relation violation, not sum to 1 or be outside the

interval [0, 1]) (Deutsch and Journel 1998, pp. 81–86); and

(iii) generating polygon-like patterns in simulated realiza-

tions. In addition, Markov chain random field (MCRF)

models—the estimators of MCG—make use of the condi-

tional independence of nearest known neighbors in cardinal

directions, rather than calculate a set of optimal weights as

did in kriging. Although MCRF models always need to use

both auto and cross transiograms, the inference of transi-

ogram models is not difficult because it does not require a

linear model of coregionalization (Li 2007b; Zhang and Li

2008a).

As a geostatistical approach proposed for simulating

categorical variables, MCG may also be used in the same

way as conventional indicator geostatistics for estimating

threshold-exceeding probabilities. In this paper, we intro-

duce how to use MCG to estimate threshold-exceeding

probability maps of a continuous environmental spatial

variable and conduct a case study on estimating the

threshold-exceeding probability maps of clay layer thick-

ness in alluvial soils in a region to demonstrate the features

of this new approach. The objectives are: (1) to test the

feasibility of using MCG to estimate threshold-exceeding

probabilities, (2) to provide a new alternative in geosta-

tistics for environmental risk assessment, and (3) to explore

the differences in estimated probabilities by MCG and

indicator kriging using the aforementioned two methods

based on interpolation and sequential simulation.

2 Methodology

2.1 Data coding

A threshold value splits the values of a continuous spatial

variable Z into two classes, that is, values not greater than

the threshold and values greater than it. In MCRF models,

these two classes can be labeled as symbols (or called

1114 Stoch Environ Res Risk Assess (2010) 24:1113–1126

123



indicators) 1 and 2 (or A and B), respectively; that is, given

a threshold value zr, data z(ua) are coded according to the

following rule:

iðua; zrÞ ¼
1 if zðuaÞ� zr

2 otherwise
;

�
ð1Þ

where z(ua) represents a realization of the random variable

Z at an informed location ua. Since both classes are used in

modeling, we may call them class 1 and class 2 (or indi-

cator 1 and indicator 2), respectively. Therefore, for a

threshold value, we obtain a sample indicator data set of a

binary variable; and for the binary variable we use four

(two auto and two cross) transiograms to describe the

correlations within and between the two threshold classes.

Note that we use 1 and 2 as indicators in MCG, rather

than use 0 and 1 as used in conventional indicator geo-

statistics. The reason is that indicators in MCG are just

used as labels to denote different classes, not used as

probability values in calculation. MCRF equations do not

involve any indicator values. On the contrary, in indicator

kriging equations, indicators (0 and 1) are directly used as

probability values in calculation.

2.2 Transiogram modeling

A transiogram pij(h) refers to a function of a transition

probability from class i to class j over the distance lag h.

An auto-transiogram pii(h) represents the self-dependence

(i.e., auto-correlation) of a single class i and a cross-tran-

siogram pij(h)(i = j) represents the cross-dependence of

class j on class i. For convenience of use, class i is called a

head class and class j is called a tail class in a transiogram

pij(h). An experimental transiogram can be directly cal-

culated from sample data by counting transition frequen-

cies from a class to itself or another class with different

distance lags by using the following equation:

p̂ijðhÞ ¼ FijðhÞ=NiðhÞ ð2Þ

where NiðhÞ ¼
Pn

j¼1 FijðhÞ is the total of elements in the

ith row in a transition frequency matrix at the lag h, Fij(h)

represents the frequency of transitions from class i to class j

at the lag h, and n is the total number of classes (Li 2007b).

To acquire reliable experimental transiograms from sparse

samples one usually has to consider to use a lag tolerance

Dh around each specific lag value, which may be decided

by users according to the sample density. One may esti-

mate experimental transiograms omni-directionally. But to

account for anisotropies, one has to consider an appropriate

tolerance angle.

Transiograms have some special properties related to

transition probabilities and transition probability matrix,

which can be used in transiogram modeling as constraint

conditions and also simplify the transiogram modeling

burden. Some relevant properties are listed as follows: (1)

transiograms are always non-negative; (2) transiograms

with a common head class sum to one at any lag value; (3)

transiograms are normally asymmetric, but if they are

estimated bi-directionally or omni-directionally they fol-

low the detailed balance condition as mentioned later; (4)

the theoretical sill of a transiogram is equal to the pro-

portion of the tail class (Li 2007b). Based on these prop-

erties, experimental transiograms for mutually exclusive

classes are easy to model because expert knowledge can be

readily used in the modeling process (Li and Zhang 2007).

One way to acquire transiogram models for Markov

chain modeling is to use appropriate mathematical models

to fit experimental transiograms (Li 2007b). The model

fitting needs to be conducted subset by subset jointly so as

to meet the summing-to-one condition

Xn

j¼1

pijðhÞ ¼ 1; ð3Þ

where n is the number of classes. Note that here a subset

refers to all of the transiograms with the same head class i.

To ensure the condition (3), one of transiogram models

pik(h) in the subset may take the left part of unity minus the

sum of all other transiogram models as

pikðhÞ ¼ 1�
Xn

j¼1
j 6¼k

pijðhÞ: ð4Þ

Thus, that experimental transiogram p̂ikðhÞ does not

need to be fitted with a mathematical model.

The quantitative relationship between cross-transio-

grams pij(h) and pji(h) can also be used in transiogram

modeling. If transiograms are estimated bi-directionally or

omni-directionally rather than uni-directionally (e.g., from

North to South), cross-transiograms obey the following

relationship (called the detailed balance condition)

pijðhÞ ¼
pj

pi
� pjiðhÞ; ð5Þ

where pi and pj are proportions of class i and class j,

respectively. Thus, if the transiogram model pji(h) and the

class proportions pi and pj are known, the transiogram

model pij(h) can be directly obtained using Eq. 5.

To estimate the probability of (not) exceeding a

threshold value, we need to consider both the spatial auto-

correlations of the two threshold classes (i.e., class 1 and

class 2) and their cross-correlations. Thus, four transiogram

models, i.e., p11(h), p12(h), p21(h) and p22(h) are needed.

Assume we have obtained the transiogram model p11(h)

from the experimental transiogram p̂11ðhÞ: Using the above

relationships (4) and (5), we can directly calculate the other

three transiogram models as follows:
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p12ðhÞ ¼ 1�
X2

j¼1
j6¼2

p1jðhÞ ¼ 1� p11ðhÞ ð6Þ

p21ðhÞ ¼
p1

p2

� p12ðhÞ ¼
p1

p2

� 1� p11ðhÞ½ � ð7Þ

p22ðhÞ ¼ 1� p21ðhÞ ¼ 1� p1

p2

� 1� p11ðhÞ½ �: ð8Þ

Thus, as long as we acquire one transiogram model among

the four needed transiogram models, the other three can be

simply inferred according to the above relationships (6–8).

Because we normally do not need to use unidirectional

transiograms in horizontal two-dimensional Markov chain

modeling, the above relationships are widely applicable.

Hence, to model a threshold-exceeding probability using

the MCG approach, the workload of transiogram modeling

is no more than modeling a single indicator auto-vario-

gram. In addition, because the sill of a transiogram model

can be simply set to the proportion of the corresponding tail

class, it is actually easier to model an experimental tran-

siogram than to model an experimental indicator vario-

gram. The above quantitative relationships (6–8) also

imply that for a threshold value the four related transio-

grams theoretically should have equal correlation ranges.

A mathematical model can fit only the general trend of an

experimental transiogram. However, experimental transio-

grams sometimes may exhibit complex shapes. When suf-

ficient sample data are available to provide reliable

experimental transiograms (here ‘‘reliable’’ means the shape

of an experimental transiogram becomes stable with increas-

ing number of samples), the complex shape of a reliable

experimental transiogram should be regarded as the real

reflection of the heterogeneity of the variable under study.

Under this situation it is preferable to capture the complex

shape of the experimental transiogram in transiogram

modeling. An easy and effective way to acquire transiogram

models with the features of experimental transiograms is to

simply interpolate discrete experimental transiograms into

continuous models. There may be various methods for

conducting the interpolation. The linear interpolation

method for such a purpose is

pijðhÞ ¼
p̂ijðhkÞ � ðhkþ1 � hÞ þ p̂ijðhkþ1Þ � ðh� hkÞ

hkþ1 � hk
; ð9Þ

where hk?1 and hk are the corresponding lags of two esti-

mated neighboring values in an experimental transiogram,

and pij(h) is the value to be interpolated (or estimated) at the

lag h between hk?1 and hk (Li and Zhang 2007). The math-

ematical validity of the above Eq. 9 was proved in Li and

Zhang (2009). Here to deal with binary variables, we also can

get one transiogram model through interpolation using Eq. 9

and then infer the other three using the above Eqs. 6–8.

2.3 Markov chain random field models

MCRF models are needed for estimating local conditional

probabilities of occurrence of classes at uninformed

locations from several nearest known neighbors (sampled

or previously estimated locations). Similar to the transio-

gram idea, the MCRF idea was proposed also as a con-

sequence of a long-time effort to correct the deficiencies

of earlier multidimensional Markov chain models such as

underestimation of small classes, shortage of generaliza-

tion, and difficulty of conditioning to sample data (Li

2007a; Zhang and Li 2008b). Assume Z is a random

variable, which obeys the properties of MCRFs, defined

on a state space S ¼ 1; 2; . . .; nð Þ, and z(u) represents a

specific realization of Z at the location u. If we consider

only one nearest known data location in each of the four

cardinal directions, the general MCRF model is given as

(Li 2007a)

Pr zðuÞ ¼ kjðNÞ½ � ¼ Pr zðuÞ ¼ kjzðu1Þ½
¼ l1; zðu2Þ ¼ l2; zðu3Þ ¼ l3; zðu4Þ ¼ l4�

¼
pl1kðh1Þ

Q4
g¼2 pklgðhgÞPn

f¼1 pl1f ðh1Þ
Q4

g¼2 pflg
ðhgÞ

h i ð10Þ

where, (N) refers to all of the data in different directions

(i.e., samples for interpolation, or samples plus previously

simulated data for sequential simulation); h1, h2, h3, and h4

represent the distances from the location u being estimated

to its nearest known neighbors u1, u2, u3, and u4 in four

cardinal directions, respectively; and k, f and lg (g ¼
1; . . .; 4) represent the states of the Markov chain (or the

random variable Z) at the five locations u, u1, u2, u3, and

u4, respectively, all defined on the state space S. In direc-

tions 2, 3, and 4, transitions are from the current location u

to its nearest known neighbors, but in direction 1 (i.e., the

coming direction of the Markov chain), the transition is

from the nearest known neighbor u1 to the current location

u. The above general model is illustrated in Fig. 1a.

The above solution is used for modeling categorical

variables. To model the probabilities of a continuous

attribute (not) exceeding a threshold value zr, we need to

consider two threshold classes: 1 for z(u) B zr and 2 for

z(u) [ zr. Thus, the above equation can be rewritten as

F u; zrjðNÞ½ � ¼ Pr zðuÞ� zrjðNÞ½ � ¼ Pr zðuÞ ¼ 1jzðu1Þ½
¼ l1; zðu2Þ ¼ l2; zðu3Þ ¼ l3; zðu4Þ ¼ l4�

¼
pl11ðh1Þ

Q4
g¼2 p1lgðhgÞP2

f¼1 pl1f ðh1Þ
Q4

g¼2 pflgðhgÞ
h i ð11Þ

and
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1� F½u; zrjðNÞ� ¼ Pr½xðuÞ[ zrjðNÞ� ¼ Pr zðuÞ ¼ 2jzðu1Þ½
¼ l1; zðu2Þ ¼ l2; zðu3Þ ¼ l3; zðu4Þ ¼ l4�

¼
pl12ðh1Þ

Q4
g¼2 p2lgðhgÞP2

f¼1 pl1f ðh1Þ
Q4

g¼2 pflgðhgÞ
h i ð12Þ

for the two classes (or indicator values) 1 and 2, respec-

tively. It can be seen that both equations involve class 1

and class 2 because f and lg (g ¼ 1; . . .; 4) all represent

states defined on the state space S = (1, 2).

For a specific unobserved location to be estimated, a

further simplified form of the model (10) may be needed

because the numbers of the nearest known neighbors found

in a search circle, one per quadrant, may be fewer than four

at some places. This is especially true for locations close to

edges. For internal locations, if samples are too sparse and

the search radius is small, at the beginning stage of a

simulation the nearest known neighbors found within

quadrants of a search circle may also be less than four.

Thus situations with less than four nearest known neigh-

bors must also be considered. Under the situations of

having three, two and one nearest known neighbor(s), for

class 1 Eq. 11 can be simplified as

Pr½zðuÞ� zrjðNÞ� ¼ Pr½zðuÞ ¼ 1jzðu1Þ ¼ l1; zðu2Þ ¼ l2;

zðu3Þ ¼ l3� ¼
pl11ðh1Þ

Qm
g¼2 p1lgðhgÞP2

f¼1 pl1f ðh1Þ
Qm

g¼2 pflgðhgÞ
h i; m ¼ 2; 3

ð13Þ

and

Pr zðuÞ� zrjðNÞ½ � ¼ Pr½zðuÞ ¼ 1jzðu1Þ ¼ l1�

¼ pl11ðh1ÞP2
f¼1 pl1f ðh1Þ
� � ¼ pl11ðh1Þ; ð14Þ

respectively. Note that as long as one nearest known

neighbor can be found, that location should serve as the

location u1—the location from which the Markov chain

comes. In case that no one nearest known neighbor can be

found within a search circle, we have

Pr½zðuÞ� zrjðNÞ� ¼ Pr½zðuÞ ¼ 1� ¼ p1; ð15Þ

where p1 is the proportion of class 1, which equals the

theoretical sill of transiograms p̂l1ðhÞ: Equation 15 is based

on the following rational assumption: The Markov chain

comes from a location outside the search circle, far away

from the current location being estimated. Because its last

stay location is beyond the correlation range, its influence

to the current location can be ignored. After moving suf-

ficient distance (or spatial steps) the Markov chain reaches

its current location with a stable probability distribution—

its class proportions, which is a basic property of Markov

chains.

Equation 12 can be simplified similarly for class 2.

2.4 Search algorithm

In practice, to deal with irregular data in the whole space,

the cardinal directions have to cover the whole area of a

search circle so that no nearest known neighbor will be

missed. This requires the cardinal directions be replaced by

the equally split search sectors of the search circle such as

quadrants. Such a replacement is necessary and also

acceptable to MCRF models because the requirement of

cardinal directions in the conditional independence

assumption of nearest known neighbors is not very strict in

applications. The quadrant search algorithm is shown in

Fig. 1b. When estimating the conditional probability dis-

tribution of an attribute at an uninformed location, the

algorithm will look for one nearest known neighbor from

each quadrant (if there are known neighbors in the quad-

rant). The nearest known neighbors finally found from all

quadrants constitute the MCRF model for estimating the

attribute at the uninformed location. The quadrant search is

not a new idea; as it is explained in the Websters-online-

dictionary, quadrant search is ‘‘similar to octant search, but

using four sectors instead of eight sectors. (It) applies to

any interpolation method where a limited number of sam-

ple datapoints are used to estimate intermediate values’’

(Staff of the U.S. Bureau of Mines 1996). As to how to

choose the search radius, it is users’ decision based on the

density of their samples. However, one principle is that it

should avoid using such a small search radius that the

search circle frequently covers no or less than four nearest

known neighbors. Testing in simulation of soil types

showed that the MCRF sequential simulation (MCSS)

algorithm which employed quadrant search was not only

applicable but also demonstrated obvious advantages over

conventionally used sequential indicator simulation (Li and

Zhang 2007).

Fig. 1 Illustration of the general Markov chain random field model

for four nearest known neighbors in four cardinal directions (a) and

the quadrant search algorithm (b). Black cells refer to data; the white

cell refers to the location to be estimated; the thick arrow represents

the moving direction of the Markov chain; dash arrows represent

interactions between the nearest data and the location to be estimated;

and all arrows point to the directions of transition probabilities
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With the MCRF models serving as the estimator and the

above search algorithm, MCG can estimate the threshold-

exceeding probabilities at uninformed locations directly

from samples (i.e., MCRF-based interpolation method) or

estimate them from a number of simulated realizations

generated by the MCSS algorithm (i.e., MCSS-based

simulation method).

2.5 Indicator kriging

Threshold-exceeding probabilities can be estimated directly

by IK or indirectly through a number of simulated realiza-

tions by SIS—an IK-based sequential simulation algorithm

(Goovaerts 1997; Deutsch and Journel 1998). In IK, a

continuous variable is coded as indicator values 1 and 0 at a

threshold. Given a threshold value zr, sample data z(ua) are

coded according to the following rule:

iðua; zrÞ ¼
1 if zðuaÞ� zr

0 otherwise

�
: ð16Þ

Using ordinary IK as an example, the probability of the

continuous random variable Z not exceeding the threshold

value zr at an uninformed location u is estimated by the

following rule:

Fðu; zrjðNÞÞ½ ��¼ PrðzðuÞ� zrjðNÞÞ½ ��

¼
XNðuÞ
a¼1

kaðu; zrÞiðua; zrÞ; ð17Þ

where (N) represents the number of data in the

neighborhood of location u, and ka(u; zr) is the weight

assigned to the indicator value i(ua; zr) at location ua. The

weight ka(u; zr) is given by an ordinary kriging system

XNðuÞ
b¼1

kbðu; zrÞCðua � ub; zrÞ þ lðu; zrÞ

¼ Cðua � u; zrÞ; a ¼ 1; . . .;N uð Þ;
XNðuÞ
b¼1

kbðu; zrÞ ¼ 1

8>>>>>>>><
>>>>>>>>:

ð18Þ

where C represents the indicator covariance between any

two data in the neighborhood of location u (Goovaerts

1997 pp. 293–294).

Equation 17 clearly shows that when estimating the

threshold-exceeding probability at an uninformed location

the 0 indicator values within the neighborhood do not make

contribution. Thus, if all of the data in the kriging neigh-

borhood have an indicator value 0, the threshold-exceeding

probability at the uninformed location must be zero.

In IK, the search algorithm does not consider cardinal

directions because correlations between data are also

incorporated in estimation of data weights, and the neigh-

borhood may consider more than four data. In addition,

indicator kriging uses only one indicator auto variogram

for estimating threshold-exceeding probabilities.

2.6 Sequential simulation and interpolation

For each approach (conventional indicator geostatistics or

Markov chain geostatistics), sequential simulation and

interpolation actually use the same estimator (i.e., models

for estimating local conditional probabilities. For MCG

they are Eqs. 11–16). Their differences lie with condi-

tioning data, visiting path and whether or not using Monte

Carlo simulation. The IK-based interpolation method for

threshold-exceeding probability estimation includes the

following steps:

• Step 1: Discretize the study area into a grid of pixels

and insert the sample indicator data (1 and 0) into the

grid.

• Step 2: Choose a proper search radius.

• Step 3: Visit each unsampled pixel of the grid only once

along a path (usually row by row from left to right).

• Step 4: At each unsampled pixel, estimate the proba-

bility of not exceeding the threshold value using an IK

model and sample indicator data within the search

circle centered on the unsampled pixel.

The MCRF-based interpolation method is similar except

that (i) it uses a MCRF model, (ii) it uses only four nearest

data, one per quadrant, within the search circle, or less if no

data found in some quadrants, and (iii) it uses 1 and 2 as

indicators.

The SIS-based simulation method for threshold-

exceeding probability estimation includes the following

steps:

• Step 1: Discretize the study area into a grid of pixels

and insert the sample indicator data (1 or 0) into the

grid.

• Step 2: Choose a proper search radius.

• Step 3: Visit each unsampled pixel of the grid only once

along a random path.

• Step 4.1: At each unsampled pixel, estimate the

probability of not exceeding the threshold value using

an IK model and conditioning data (including indica-

tors of sample data and previously simulated data)

within the search circle centered on the unsampled

pixel.

• Step 4.2: Build a cumulative probability distribution

with only two intervals using the estimated probability

and its complement.

• Step 4.3: Draw a random number uniformly distributed

in [0, 1]. The simulated indicator value at the visiting

location is the one (1 or 0) that corresponds to the

probability interval that include the random number.
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• Step 4.4: Add the simulated value to the conditioning

data set and proceed to the next unsampled pixel along

the random path.

• Step 5: Repeat the procedure from Step 3 to Step 4.4

with a different random path to generate another

realization.

• Step 6: Estimate the threshold-exceeding probability

map from a number of realizations by counting the

times of occurrence of an indicator value (1 or 0) at

each pixel.

Note that here we simulated only the indicator values

rather than the whole value range of the continuous vari-

able, which is sufficient for estimating threshold-exceeding

probability maps. The MCSS-based simulation method is

similar to the SIS-based simulation method except that (i) it

uses a MCRF model, (ii) it uses only four nearest data, one

per quadrant, within the search circle, or less if no data

found in some quadrants, and (iii) it uses 1 and 2 as

indicators.

3 Case study

3.1 Data acquisition and analysis

Clay layers play a significant role in alluvial soils in

influencing agricultural production and environmental

management. For example, they may strongly affect the

transport processes of field water and solute, water reten-

tion, nutrient sorption, and crop root growth in soils. In this

case study we chose the clay layer thickness within 2 m

soil depth at a regional scale as the studied regionalized

random variable and estimated the probabilities of this

variable (not) exceeding some thickness threshold values.

The field sample data set was obtained in 1994. Field

observations and samplings were arranged in an approxi-

mately 15 km2 rectangular area around the Quzhou

Experiment Station of China Agricultural University in

Quzhou County, Hebei Province, China. A total of 139

observation points were arranged on a triangular grid, with

a sampling interval of 350 m (except for places of villages)

(Fig. 2) (Zhang and Li 2008a). The change of soil texture

along each soil profile was determined by drilling bore-

holes and empirical hand texturing. Clay layer thickness in

each soil profile was further derived from the textural layer

records of profiles.

Figure 3 shows the histogram of the clay layer thick-

ness estimated from the observed data. The histogram

tends to be left-skewed. Clay layers in 2 m soil depth have

an average thickness of 46.15 cm. No clay layers occur in

quite a few soil profiles. Three thresholds of clay layer

thickness, that is, 10, 50 and 100 cm, were chosen for

probability estimation in the case study. For convenience

of estimation, the study area was discretized into a 239 by

97 raster with a pixel size of 25 m by 25 m. Using the

three threshold values, the 139 sample data of clay layer

thickness were transformed into three indicator data sets.

Omni-directional experimental transiograms were esti-

mated from each of the indicator datasets, as shown in

Figs. 4, 5 and 6. A lag tolerance of 12 pixel lengths was

used in estimating experimental transiograms so as to

avoid steep fluctuations.

Two sets of experimental transiograms were fitted by

mathematical models: First an exponential model was

used to simply fit one of them and then the other three

were further calculated from the fitted model (see Figs. 4,

6). The simple model fits the first two low-lag values

(except for the origin point) of the experimental transio-

gram well. The model fitting process follows the rules

designed for modeling experimental transiograms of cat-

egorical variables (Li 2007b), that is, nugget effect is set

to zero, sill is set to the proportion of the tail class, and

measured low-lag values have the priority of being fitted

as well as possible. In Fig. 5, the linear interpolation

method of Eq. 9 is used to get transiogram models. The

purpose of using these two methods is to demonstrate that

both methods are applicable. These transiogram models

effectively represent the spatial auto and cross correlations

of the threshold classes of clay layer thickness. From

Fig. 4, it can be seen that the auto-correlation range of the

class 2 (i.e., p22(h), clay layer thickness [ 10 cm) is about

17 pixel lengths (i.e., 425 m). The other auto and cross

correlation ranges for the same threshold value can be

simply inferred from the corresponding calculated transi-

ogram models (e.g., they are the lags corresponding to

95% of sills for exponential models). It is easy to see that

they are all about 425 m, as defined by the quantitative

relationships in Eqs. 6, 7, and 8. Correlation ranges for

other threshold values can be approximately discerned

from the corresponding transiogram models as shown in

Figs. 5 and 6. The correlation ranges shown on the tran-

siograms for threshold values 50 and 100 cm are all about

450 m, which is close to that for the 10 cm threshold

value.

Fig. 2 Locations of observed soil profiles
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Omni-directional experimental indicator auto vario-

grams were estimated from the data sets using the GSLIB

software. For the thickness threshold value of 10 cm, a

spherical model (range 40 pixel lengths, nugget 0.09 and

sill 0.15) was used to simply fit the experimental indicator

auto variogram ĉI hð Þ: The use of a nugget effect and the

free setting of the sill enable us to use a longer range to

better fit all values of the experimental indicator auto-

variogram. Such a model fitting follows the custom of

variogram modeling in conventional geostatistics. The

fitted indicator auto variogram model cI(h) was used here

for the case study.

Mean: 46.15cm
Mediam: 45.00cm
STDEV: 30.59cm
CV: 0.66
Min: 0cm
Max: 140cm
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Fig. 3 Sample descriptive statistics and histogram of clay layer

thickness

Fig. 4 Experimental

transiograms and their models

of clay layer thickness for the

threshold value 10 cm. Here

Label 1 refers to the class of

being not greater than 10 cm,

and Label 2 refers to the class of

being greater than 10 cm. Lags

are represented using numbers

of pixel length

Fig. 5 Experimental

transiograms and their models

of clay layer thickness for the

threshold value 50 cm using the

linear interpolation method.

Label 1 refers to the class of

B50 cm and Label 2 refers to

the class of [50 cm. Lags are

represented using numbers of

pixel length
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3.2 Estimated results by MCG

We first estimated the threshold-exceeding probability

maps of clay layer thickness through a number of simulated

realizations generated by the MCSS algorithm. Figure 7

shows those probability maps for the three thickness

threshold values, each estimated from 1,000 simulated

realizations. These probability maps look nice (no uneven

transitions) and they clearly indicate where and with how

much probability the clay layer thickness exceeds or does

not exceed one of the defined thickness threshold values.

These data are useful for estimating the risk of, for

example, the drainage of water along soil profiles being

blocked. They are also helpful for demonstrating and

visualizing the uncertainty in the spatial distribution of clay

layer thickness. Note that the probability maps for class 1

and class 2 of each threshold value are mutually comple-

mentary and sum to 1 at every location.

The number of simulated realizations used for proba-

bility estimation has some effects on estimated results.

However, as long as the number of realizations is not very

small (e.g., less than 100) the effects can be neglected. We

found that the probability maps estimated from 100 real-

izations with different random number sequences have

little difference in detail, and when the number of real-

izations increases to 1000 there is no visual difference for

different random number sequences.

Realization maps generated here do not reflect the spa-

tial pattern of a continuous variable because they have only

two classes and do not account for the whole continuous

data range of the attribute (e.g., here 0 cm to a maximum

thickness value in the study area). The hardened map based

on a certain probability level (e.g., 0.2, 0.5, 0.8, or 0.95) of

a threshold class can, however, indicate visually the areas

where the attribute can be generally classified into some

‘‘quality grade’’ (e.g., good drainage condition) under the

probability level (Goovaerts et al. 1997). Figure 8 shows

the hardened maps of clay layer thickness being not greater

than each of the three thickness threshold values at the

probability levels of 0.5 and 0.25, respectively.

Besides the MCSS-based simulation method used

above, we also used the MCRF-based interpolation method

to estimate the probability maps of (not) exceeding each of

the three thickness thresholds. Because previously esti-

mated data in the interpolation process are not included

into the conditioning data set for later estimation of other

uninformed locations, whether the visiting path is random

or not has no effect on interpolated results. Considering

that the nearest known neighbors used in the two methods

for estimating the same uninformed location are usually

different (except at the beginning), the estimated results are

expected to be different. Figure 9 contrasts the two prob-

ability maps of clay layer thickness being not greater than

10 cm, estimated using the two different methods respec-

tively. It can be seen that some differences exist between

them. A major difference is that the transition zones from

high value areas to low value areas is very smooth in the

MCSS-based probability map using the simulation method

(see Fig. 9a), but not so much in the MCRF-based proba-

bility map using the interpolation method (see uneven

transitions in Fig. 9b). This transition problem may be

related to the spatial change of data configurations in

estimation neighborhoods and the sparseness of condi-

tioning data (only samples) in the interpolation process. On

the contrary, in the simulation process the conditioning

data (samples plus visited locations) quickly become

abundant due to the addition of simulated data at earlier

steps. The small and relatively fixed neighborhood defined

Fig. 6 Experimental

transiograms and their models

of clay layer thickness for the

threshold value 100 cm. Label 1
refers to the class of B100 cm

and Label 2 refers to the class of

[100 cm. Note that here the

unit of lag distance is meter
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by quadrant search and used in MCRF modeling may be

the second reason for such a difference.

Obviously it is the difference between the joint esti-

mation of probabilities at uninformed locations in

sequential simulation and the separate estimation of them

in interpolation that contributes to the above difference

between the probability maps (i.e., the transition problem).

Similar differences can also be seen from the maximum

probability maps estimated using the two methods

(Fig. 10). In addition, the two maximum probability maps

reveal another difference: in the maximum probability

map based on interpolation (see Fig. 10b), it seems each

sample point applies its influence to its vicinity isolatedly

(no apparent joint effects can be seen); however, in the

maximum probability map based on simulation (Fig. 10a),

multiple neighboring sample points belonging to the same

class, particularly those belonging to class 1, clearly

generate a joint influence around them and thus form joint

high probability areas. This means that by incorporating

previously estimated data into the conditioning data set

sequential simulation is much more reasonable for

uncertainty assessment than interpolation which estimates

each uninformed location purely based on the sparse

samples.

Fig. 7 Estimated probability

maps of clay layer thickness

(not) exceeding some thickness

threshold values (i.e., 10, 50,

and 100 cm)

Fig. 8 Maps of clay layer

thickness (not) exceeding

threshold values (i.e., 10, 50,

and 100 cm), hardened from

estimated occurrence

probabilities. a The red class

indicates the areas where clay

layer thickness is not greater

than a certain threshold value at

the probability level of 0.5. b
The red class indicates the areas

where clay layer thickness is not

greater than a certain threshold

value at the probability level of

0.25
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3.3 Comparison with indicator kriging

We also estimated the threshold-exceeding probability

maps of clay layer thickness using conventional indicator

geostatistics. Ordinary indicator kriging (oIK) was chosen

as the estimator. Figure 11a, b shows the SIS-based prob-

ability map and the IK-based probability map, respectively,

for clay layer thickness not exceeding the thickness

threshold value 10 cm. Although both kinds of probability

maps were suggested and used to represent the uncertainty

of continuous variables, they actually displayed obvious

differences in this case study. It can be seen that the IK-

based probability map shows clear influence gradients of

class 1 (i.e., B10 cm class) sample data while the SIS-

based probability map does not have such features. The

latter map indicates farther and also smoothly decreased

influence of class 1 samples. This is because previously

simulated data can pass the influence of samples to distant

places when they are included into the conditioning data set

for later simulation of other uninformed locations in a

simulation. A common characteristic of the two probability

maps is that probability values appear to be zero or close to

zero at all locations beyond the influence scope of class 1

sample data, which agrees with Eq. 18. This is obviously

not rational. When a class does not appear in the sparse

samples in an area, it is very possible that it is just missed

by the sampling; so its occurrence probability at an

unsampled location in the area should not be simply zero.

This irrationality of conventional indicator geostatistics is

caused by the fact that indicator kriging ignores interclass

correlations. In addition, without considering interclass

correlations, there is no guarantee that the estimated

probability values at any unsampled location for class 1

and class 2 can sum to 1 unless one takes the complement

of the other.

Three differences can be found between the MCSS-

based probability map (Fig. 9a) and the SIS-based one

(Fig. 11a): (a) The latter map has fuzzier or wider transi-

tion zones from the high-probability areas to zero (or low)

probability areas, which should be a reflection of dispersed

patterns in simulated realizations generated by SIS (Li and

Zhang, 2007). (b) The SIS-based probability map has zero

or close-to-zero values in the areas without class 1 (i.e.,

B10 cm) samples; on the contrary, the MCSS-based

probability map shows obvious non-zero values in the same

areas except for on exact class 2 (i.e., [10 cm) sample

locations. This means that the incorporation of cross-cor-

relations in MCRF models has obvious contribution to the

estimated probabilities. (c) In the area without samples

(i.e., the right-bottom area), the SIS-based probability map

has zero values but in the MCSS-based probability map the

probabilities in the same area tend to equal the marginal

probability of class 1 (the B10 cm class), that is, its pro-

portion 0.1655. Apparently the latter map is more reason-

able and this results from the consideration of both classes

which guarantees the total probabilities sum to one. The

SIS-based method considers only the contribution of a

single class when estimating its occurrence probabilities.

So once no data of a class are found in the neighborhood of

a location, the estimated probability of the class at the

location becomes zero.

Fig. 9 Probability maps of clay layer thickness in 2 m soil depth to

be B10 cm using different Markov chain random field (MCRF)

estimation methods. a Estimated from realizations generated by

MCRF sequential simulation. b Estimated directly from samples by

MCRF interpolation

Fig. 10 Maximum probability maps of the two threshold classes of

clay layer thickness in 2 m soil depth to be B10 cm using different

MCRF estimation methods. a Estimated from realizations generated

by MCRF sequential simulation. b Estimated directly from samples

by MCRF interpolation
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Comparing the IK-based probability map (Fig. 11b)

with the MCRF-based probability map (Fig. 9b), we may

find similar differences, except that the data values beyond

the influence scope of class 1 samples in the IK-based map

are absolutely zero and that some uneven transitions of the

estimated probability values appear around class 1 sample

locations in both maps. The occurrence of zero probability

values of class 1 (i.e., the B10 cm class) in the areas

beyond the influence scope of class 1 sample locations in

the IK-based map is apparently a flaw of IK caused by

ignoring interclass correlations, as proved by Eq. 18.

4 Conclusions

The MCG approach for estimating threshold-exceeding

probability maps was introduced and applied to a case

study in spatial uncertainty assessment of clay layer

thickness. Although the MCG approach needs to use four

auto and cross transiogram models to deal with one

threshold value, estimating a single transiogram model is

sufficient to infer the others by making use of the properties

of transition probabilities. The case study shows that by

estimating the local conditional probability of a threshold

class at each location from a number of simulated real-

izations, reasonable probability maps for different thresh-

old values can be acquired. These probability maps reflect

the spatial uncertainty of clay layer thickness (not)

exceeding some thresholds. They may be further hardened

as binary maps based on different probability levels

for representing certain ‘‘quality’’ areas under a certain

probability level. A comparison between MCG and con-

ventional indicator kriging methods in estimating thresh-

old-exceeding probabilities indicates that MCG provides a

feasible method for spatial uncertainty assessment of con-

tinuous environmental variables with some advantages.

The study proves the following points: (i) when esti-

mating threshold-exceeding probabilities, incorporation of

cross-correlations of the two indicators (or classes) for a

threshold value is valuable for generating reasonable results.

Without incorporating cross-correlations, the estimated

probabilities may be unreliable. (ii) For each approach, the

threshold-exceeding probability map estimated through

sequential simulation is more or less different from that

estimated through interpolation. The former shows more

reasonable patterns than the latter does. (iii) The probability

map estimated through MCRF interpolation shows some

undesirable uneven transitions, especially when samples are

sparse and located unevenly. This may imply that the

quadrant search is not perfect for interpolation to generate

nice-looking maps, although it has long been a choice for

reducing clustering in interpolation (Goovaerts 1997,

p. 178). One way to remove the uneven transitions may be

using a smoothing method to smooth the estimated condi-

tional probability data.

In general, based on point (i), we think that the MCG

approach is appropriate and has advantages for spatial

uncertainty assessment of continuous spatial variables; and

based on points (ii) and (iii), we recommend using

sequential simulation rather than interpolation algorithms

to estimate threshold-exceeding probability maps for spa-

tial uncertainty assessment. This agrees with recent studies

about using SIS for spatial uncertainty estimation.

Although using sequential simulation to estimate proba-

bility maps will require more CPU time than using inter-

polation, it is not a major concern now for both SIS and

MCSS because most CPUs of current personal computers

have sufficient speeds to generate a large number of sim-

ulated realizations in a reasonable time using SIS and

MCSS.

The MCG approach may be further extended by adding

a time dimension to estimate the spatiotemporal state

change of ecological variables. Many complex spatial

ecosystems show threshold dynamics and abrupt changes

in their states (Andersen et al. 2009; Contamin and Ellison

2009; Guttal and Jayaprakash 2009; Scheffer et al. 2009).

Such state changes or transitions should be related to the

spatial heterogeneity of the ecosystems. An important

question in these systems concerns on determining whether

such a state transition has happened and even more

importantly whether such an abrupt change can happen in

the near future. van Nes and Scheffer (2005) studied the

implication of spatial heterogeneity for catastrophic regime

shifts in ecosystems. Dakos et al. (2009) found that spatial

Fig. 11 Estimated probability maps of clay layer thickness being not

greater than 10 cm using conventional indicator geostatistical meth-

ods. a Estimated from realizations generated by sequential indicator

simulation. b Estimated directly from samples by indicator kriging

interpolation
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correlations might serve as a leading indicator of cata-

strophic shifts. Spatiotemporal geostatistics has been used

to estimate the temporal change of some spatiotemporal

variables such as ground water table (Christakos 2000).

Markov chains were traditionally used for time series

analysis of discrete states; it is in prospect that a spatio-

temporal MCG might provide an effective statistical tool to

detect or predict the temporal state transitions of a spatially

heterogeneous ecosystem.

In this study, we did not compare the MCG approach with

other approaches for threshold-exceeding probability esti-

mation, such as disjunctive kriging (Armstrong and Math-

eron 1986), clipped Gaussian random fields (de Oliveira

2000) and generalized linear model (Gotway and Stroup

1997), although they each may have some advantages over

indicator kriging. One reason is that our study was mainly

focused on the sequential simulation strategy, but we did not

find sequential simulation algorithms with software based

on these methods. The second reason is that these methods

are generally quite computationally demanding in case of

large data sets and large maps (de Oliveira 2000; Lark and

Ferguson 2004). In addition, disjunctive kriging and clipped

Gaussian random fields also require an assumption of nor-

mality of data. Our data set in the case study (see Fig. 3)

apparently does not meet this requirement.
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