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After the transiogram concept and some joint-modeling methods were proposed for 

implementing multidimensional Markov chain simulation of categorical spatial variables (Li 

2007a, Li and Zhang 2010), some misunderstandings about the transiogram concept and 

transiogram models emerged in some online materials (e.g., Cao et al. 2013) and some 

manuscripts that were attempted to publish during 2016 to 2017. The misunderstandings with 

ambiguous statements could easily confuse many readers, including some researchers who 

may have interest in using transiograms in their studies. The following explanations aim to 

clarify the major misunderstandings. 

 

(1) The definition of the transiogram    

One misunderstanding on the transiogram is about its definition. During last several years, 

there were some attempts to redefine the transiogram with joint probability and/or indicator 

variables due to misunderstandings. Li (2007a) defined the transiogram theoretically as a 

transition probability-lag function and visually as a transition probability-lag diagram. First, 

such a definition considers the transiogram as transition probability in the Markov chain 

framework. Transition probability is the fundamental element of Markov chain theory. It can 

be estimated directly from real data, and the estimation can be unidirectional, bidirectional, 

multidirectional or omnidirectional, with or without a tolerance angle and width. There is no 

necessity to derive transition probability values from bivariate joint probability values through 

the relationship between conditional probability and joint probability, while one can estimate 

them directly from the same real data. Although a transition probability is a two-point 

conditional probability, transition probability has its unique properties and meanings in 

Markov chain theory, and it is traditionally used within a transition probability matrix (TPM). 

For example, idealized transiograms can be directly computed from a TPM, but two-point 

joint probability has no such an advantage. Therefore, redefining the transiogram through a 

bivariate joint probability-lag function would eliminate the legitimacy of unidirectional 

cross transiograms and idealized transiograms. Second, transition probabilities directly 

describe the dependencies of the classes (or states) of discrete/categorical variables. There is 

no necessity to first transform a categorical data set (with multiple classes) into multiple sets 

of indicator data (i.e., 0 and 1 values) and then use indicator data to estimate transition 

probabilities or transiograms. Carle and Fogg (1996) studied the relationships of transition 

probability with indicator variables, indicator covariance and indicator variograms; while the 

study is undoubtedly important and interesting, its major objective was using transition 

probability to reformulate indicator kriging models based on the relationships. In addition, the 

transiogram definition in Li (2007a) is also identical with the transition probability-lag 

functions and Markov diagrams provided in Luo (1996).  

 

(2) The symmetry of two-point joint probability function    
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Some thought that two-point joint probabilities or joint probability functions could be 

asymmetric or even unidirectional. This was probably an error in some early articles related 

with spatial transition probability (function) (e.g., Carle and Fogg 1996). Transition 

probability, conditional probability, and joint probability are three different concepts, 

although they are quantitatively related when they are used to describe the probability 

relationship of two events of the same random process at two spatial locations or two time 

points. A joint probability P(A∩B) (or written as P(A, B)) is always symmetric and 

non-unidirectional, that is, P(A∩B) = P(B∩A). Assuming P(A∩B) to be asymmetric and 

estimating it asymmetrically is equal to estimating a conditional probability or transition 

probability. In probability theory, a conditional probability P(A|B) is defined as P(A|B) = 

P(A∩B)/P(B). With this definition, it seems that P(A|B) does not necessarily have the 

legitimacy to be unidirectional, because P(A∩B) is non-unidirectional. Transition probability 

PAB as an element of Markov chain theory is a special conditional probability and can be 

unidirectional. Transition probabilities in the form of a TPM describe the properties of a 

Markov chain. If a Markov chain is irreversible, its forward transition probabilities and 

backward transition probabilities are not equal (under this situation, the forward Markov 

chain and the backward Markov chain may be regarded as two different Markov chains, as 

conventionally one TPM describes one stationary Markov chain). That is why it is not a good 

choice to define spatial transition probability or transiogram using spatial joint probability or 

joint probability-lag function. 

 

(3) Transiograms and the path of a Markov chain    

Some thought that spatial transition probability and transiogram should be path-dependent, 

because in a multidimensional space a Markov chain may have many different paths from 

point u to point u', and thus if it goes through different paths the transition probabilities along 

different paths from u to u' should be different. This is a misunderstanding. A Markov chain 

as a stochastic process may have a path. However, transition probability and transiogram, as 

static measures estimated from data, have nothing to do with paths. The h in transiogram is 

a vector variable because it contains direction, that is, h = (h, direction), rather than a 

sequence of locations. It has no meaning of path. 

 

(4) The validity of transiogram models    

Some though that some transiogram models (e.g., spherical and Gaussian models), except 

for the exponential model, are invalid because similar variogram models were recently 

thought to be invalid in indicator kriging under some special situations (indicator random 

fields, particularly excursion sets of Gaussian random fields). However, on the one hand, 

these variogram models have been widely used in indicator kriging for decades; on the other 

hand, in Markov chain geostatistics there is no requirement for MCRFs to be the "excursion 

sets of Gaussian random fields" or even "indicator random fields". Any reasonable models 

that can fit experimental transiograms effectively and meet the basic requirements of 

transition probabilities (e.g., summing-to-unity, non-negative) may be used to provide 

transition probability parameters to MCRF models, and thus may be valid transiogram models 

in Markov chain geostatistics (Li 2007b, Li et al. 2015). Transiograms include 

auto-transiograms and cross-transiograms, which have different curve shapes and physical 
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meanings. Experimental transiograms have complex shapes. While idealized transiograms are 

smooth curves and idealized auto-transiograms tend to be exponential, studies demonstrated 

that some of idealized cross-transiograms are non-exponential - some have a peak in the 

low-lag section, and less commonly some tend to have the shape of Gaussian variogram 

model (Li et al. 2012) (Fig. 1). This means that even if a categorical data set is absolutely 

stationary Markovian, its cross-transiograms are still not all exponential.  

 

 

Figure 1. Some idealized (left) and experimental (right) cross-transiograms estimated from a 

soil map, among which some are obviously non-exponential and some are even parabolic near 

the origin (from Li et al. 2012). 

 

The transiogram was proposed for implementing multidimensional Markov chain 

simulation and also as a general spatial correlation measure for categorical data, rather than 

specifically for implementing indicator kriging or simulating indicator random fields. Even if 

some variogram models were proven to be invalid for indicator random fields or indicator 

kriging in some situations, it does not mean that the similar math models were invalid to 

transiograms for categorical data or the MCRF approach. In addition, so far the circular and 

triangular variogram models have not been recommended or used by anybody for 

transiogram modeling. Interestingly and ironically, Cao et al. (2013, figures 1 and 4) showed 

that some cross-transiograms computed from a TGS (truncated Gaussian simulation) 

realization tend to be Gaussian with parabolic features near the origin and none of the 

transiogram models by non-parametric transiogram modeling method is exponential, both 

conflicting with their assertions. At the time that the transiogram had not been widely used 

and the MCRF approach was still at the early stage of development, rushing to judge such a 

spatial correlation measure (i.e., the transiogram) in an ambiguous way could easily confuse 

many colleagues and potential users.     

 

(5) The transiogram and the energy function of Markov random fields 

Some thought that the energy function of the Markov random field (MRF) model (i.e., the 

Gibbs distribution) could be simplified into a spatial two-point conditional probability 

function in the form of an exponential function if only a two-node clique is considered; thus, 

the transiogram could be derived from the MRF model, and consequently the logistic function 

should be a transiogram model. We are afraid that this is a misunderstanding to both the MRF 

model/Gibbs distribution and the transiogram concept. The Gibbs distribution, as a maximum 

entropy distribution, include all of the cliques (from single-node cliques to multiple-node 

cliques) of a neighborhood (if not consider the whole random field) in its energy function, 
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among which each clique’s potential function represents the energy of the exact clique. There 

is even no reason or rationale to simplify a multiple-node clique to one or multiple 

two-node clique(s) while they represent energy at different levels. Even if one might ignore 

all of the multiple-node cliques (e.g., three-node and four-node cliques) from the energy 

function of Gibbs distribution, there is no reason to consider only one two-node clique and 

ignore other cliques. On the contrary, as a basic element of Markov chain theory, transition 

probability has existed for a long time, and spatial transition probability had been used in 

geology since a long time ago (see Vistelius 1949, Carr et al. 1966). Why does one have to 

simplify the MRF energy function to find a transition probability while the Gibbs distribution 

actually contains no transition probability? In addition, as a transition probability-lag 

function/diagram, the transiogram does not need a partition function to normalize itself. 

Irrationally interpreting the MCRF model and the transiogram to confuse readers and mess up 

them and the related scientific area, as done by some people in a series of joking articles (e.g., 

Huang et al. 2016), cannot bring any reputation to the authors themselves.    

 

(6) The transiogram and pioneer studies    

As a transition probability-lag function/diagram (or curve), there is no doubt that the 

transiogram should cover the pertinent progress made in pioneer studies in this respect (i.e., in 

transition probability-lag function/diagram) (e.g., Schwarzacher 1969, Luo 1996, Carle and 

Fogg 1997). From the beginning, our studies attempted to do so (see Li 2007a). While 

proposing the term and concept system of "transiogram" is necessary for the MCRF 

approach to avoid terminological confusions and also for providing the convenience of 

description, it never claimed any progress made in pioneer studies as ours. The proposition 

of the transiogram was a result of the long-term effort of developing 1-D Markov chain into a 

Markov chain geostatistical approach, which not only needed a formally-established spatial 

correlation measure with practical estimation methods but also needed a unique name for the 

measure to work within the Markov chain geostatistical approach without terminological 

confusion. Although we did not use the transition rate method suggested in Carle and Foggs 

(1997) for transiogram modeling so far, that does not mean we thought the method was not 

valuable. In Li (2007a), the "continuous-lag Markov chain models" generated by the 

transition rate method were regarded as a kind of idealized transiogram models. If one had 

different opinions or found that this was a mistake, he/she is welcome to discuss on that point. 

Idealized transiograms were thought to be important for understanding/interpreting real-data 

transiograms and have utilization as transiogram models mainly in subsurface 

characterization (see Li 2007a, Conclusions), where sample data are usually insufficient to 

estimate reliable experimental transiograms. 

 

(7) The essences of transiograms    

The transiogram has its special meanings within the Markov chain framework and in the 

MCRF approach. In its idealized form (i.e., either sample data for transiogram estimation are 

absolutely stationary Markovian, or transiograms are directly calculated from TPMs based on 

the stationary Markovian assumption), all of its properties are based on conventional 

transition probability/Markov chain theory. For transiograms, the essences are how to 

interpret their physical meanings from their features as reflections of the pattern of the 
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underlying categorical field and how to infer a set of proper transiogram models to provide 

parameters for geospatial simulations that use spatial transition probabilities. It is obvious 

that the proper transiogram models should fit the reliable features of the experimental 

transiograms (especially their low-lag sections) as much as possible. 

   

In general, although the transiogram concept was initially intended for Markov chain 

geostatistics, it may be used in other spatial statistical methods that need transition 

probabilities at multiple spatial/time steps if one would like, and it also can be used as an 

independent metric for spatial variability characterization of categorical data. As to whether 

other spatial/geo-statistical approaches may have some special requirements to transiogram 

models, it should be discussed only within the frameworks of those specific approaches. 

Baseless and irrational interpretations or connections with irrelevant things (e.g., energy 

function of MRFs) are unnecessary and could be misleading.  
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