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Abstract This study introduces a Bayesian Markov chain random field (MCRF)
cosimulation approach for improving land-use/land-cover (LULC) classification accu-
racy through integrating expert-interpreted data and pre-classified image data. The
expert-interpreted data are used as conditioning sample data in cosimulation, and may
be interpreted from various sources. The pre-classification can be performed using any
convenient conventional method. The approach uses the recently suggested MCRF
cosimulation algorithm (Co-MCSS) to take a pre-classified image as auxiliary data
while performing cosimulations conditioned on expert-interpreted data. It was tested
using a series of expert-interpreted data sets and an image data set pre-classified by the
supervised maximum likelihood (SML) algorithm. Results show that with the density
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of the interpreted data (pixel labels) increasing from 0 to 1.81 % of total pixels, the
accuracy of optimal classification maps from Co-MCSS improves by 8.49 to 20.96 %,
being much higher than that generated by SML and those purely conditioned on expert-
interpreted data. This means that expert-interpreted data may largely contribute to the
accuracy of LULC classification from remotely sensed imagery, and inversely the
pre-classified image data also can largely contribute to the accuracy of LULC classes
simulated by the MCRF approach based on expert-interpreted data. Therefore, the
proposed approach can improve classification accuracy of pre-classified maps as long
as some expert-interpreted data are available. The main advantage of this approach is
that it may comprehensively utilize a variety of available information seamlessly to
LULC classification through expert interpretation and spatial cosimulation.

Keywords Land cover classification · Remotely sensed image · Expert interpreta-
tion · Bayesian inference · Cosimulation · Markov chain · Geostatistics

1 Introduction

Land use/land cover (LULC) maps are the basic data that are widely used for social
or environmental planning and studies. LULC changes, due to their significant impact
on regional and global climate changes, are important forcing factors to include in
both past climate simulation and future climate change predictions. Therefore, the
accuracy of LULC maps and associated uncertainty data are crucial to the success of
those activities using LULC maps as input data. However, due to a variety of reasons
such as spectral confusion caused by high intra-class variability and low inter-class
separability, clouds contamination, landscape complexity and/or algorithm limitations,
LULC maps derived from remotely sensed imagery contain a large amount of errors
(or uncertainties) and may not have a quality sufficient for many applications (Foody
2002; Gong and Howarth 1990). Consequently, it is necessary to explore effective
approaches for improving LULC classification accuracy. During last two decades,
significant effort has been devoted to developing various classification techniques for
improving classification performance (Lu and Weng 2007), such as neural networks
(Benediktsson et al. 1990), genetic algorithms (Tseng et al. 2008), Markov random
fields (Solberg et al. 1996), and support vector machines (Foody and Mathur 2004).

The reasons for low quality of many LULC maps classified from remotely sensed
imagery are usually complex. A pervasive reason may be that many scientists accom-
plish classification by only using one variable, that is, spectral characteristic (color) or
black and white tone (Jensen 2005). In addition, some methods are not capable of suf-
ficiently dealing with the complexity and low quality of many remotely sensed images
caused by reasons mentioned above, or are too sophisticated for use by non-experts. An
intuitive approach is to use expert knowledge, because experts may integrate a variety
of available information (particularly visible patterns on images and ancillary data) to
judge to which class a pixel or small area should belong. Therefore, expert knowledge
should be incorporated into remotely sensed image classification for LULC mapping.
The key challenge is how to incorporate expert knowledge in a practical and feasible
manner.
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Recently, Li and Zhang (2011) suggested using a Markov chain random field
(MCRF) method for LULC classification with uncertainty assessment. The method
used a Markov chain sequential simulation (MCSS) algorithm (Li and Zhang 2007)
to conduct conditional stochastic simulations on expert-interpreted pixel label data.
After experts interpreted a data set of pixels that are distinguishable from high reso-
lution images and other available information, the remaining uninformed pixels were
treated as uncertain areas waiting for further processing through conditional simu-
lation. The aim was to make use of both expert knowledge and context information
in remotely sensed LULC classification. Different from specific expert systems that
usually reclassify pre-classified images with expert-made decision rules into LULC
maps (e.g., Stefanov et al. 2001; Huang and Jia 2012), the MCRF method only uses
expert-interpreted pixel class label data as sample data in conditional simulation for
LULC classification; expert interpretation itself does not produce LULC maps. Experts
may use various ways and implicit rules to interpret sample pixel data from remotely
sensed images and other available information based on personal judgment. How
to interpret sample data confidently is not the concern of the method. A case study
showed that a small percentage of interpreted pixels might be able to generate a high
quality land cover map. This explorative study suggested that it is crucial to integrate
expert knowledge with multi-source information into one comprehensive framework
for LULC classification.

Although still not popular in real application practice, studies on applications of
geostatistics to remotely sensed imagery have been conducted since 1980s, and there
is a large literature in this subject, as reviewed recently by Van der Meer (2012). There
are a few studies on using geostatistical methods to improve land cover classifica-
tion accuracy pre-classified by conventional methods such as the classical supervised
maximum likelihood (SML) algorithm. For example, De Bruin (2000) used a co-
located indicator cokriging based sequential indicator simulation algorithm to predict
the areal extent of olive vegetation through integrating soft indicator data from classi-
fied imagery and hard data interpreted from digital color orthophotography. Carvalho
et al. (2006) used a direct sequential cosimulation algorithm to improve accuracy of
land cover classification by integrating ground data and remotely sensed land cover
proportional data classified by the SML algorithm. Other applications of conventional
geostatistics in remote sensing studies include, for example, deriving image texture
measures to aid classification (Balaguer et al. 2010), evaluating large area forest inven-
tory (Meng et al. 2009), and restoring missing or contaminated pixels (Zhang et al.
2014). Recently, Tang et al. (2013) used the multiple-point geostatistical algorithm
(Strebelle 2002) to post-process a remotely sensed land cover classification generated
by SML for accuracy improvement by taking the pre-classified image as a training
image, the SML probabilities as soft conditioning data and the training samples as hard
conditioning data. Other applications of multiple-point geostatistics to remote sensing
may include sub-pixel mapping of coarse satellite remote sensing images (Boucher
2009) and extracting linear objects from remotely sensed imagery (Ge and Bai 2011).

The MCRF approach is a Bayesian spatial statistical method mainly for the pur-
pose of simulating categorical fields (Li 2007a; Li et al. 2013). It provides a general
framework for a new, non-linear non-kriging geostatistical approach. It is different
from existing spatial statistical methods because it is based on a single spatial Markov
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chain running in a space with local Bayesian updating at the neighborhood level
(Li et al. 2013). The MCRF approach has the following merits: (1) it can deal with
complex interclass relationships, (2) it treats all classes as labels rather than as binary
values, (3) it is intuitive as a dynamic spatial Markov chain and uses transition prob-
abilities as parameter inputs, and (4) it is nonlinear in estimators.

The basic MCSS algorithm used in Li and Zhang (2011) did not incorporate auxil-
iary variables. Thus, it may be excessively labor-intensive to interpret a densely distrib-
uted pixel data set in order to obtain a highly accurate classification. In addition, with
only sparse sample data, it is also difficult to reproduce features with complex shapes.
However, classified images using conventional methods based on spectral reflectance
data may, to some extent, capture these kinds of features. Although classified LULC
images using conventional methods may not be sufficiently accurate, there is no doubt
that the classified data are normally strongly correlated with the expert-interpreted
sample data in the same area. Thus, if we regard a classified LULC image using a
conventional method to be a pre-classified image and use it as an auxiliary data set in a
cosimulation conditioned on accurate expert-interpreted sample data, the classification
accuracy may be greatly improved. Therefore, the recently developed Markov chain
sequential cosimulation (Co-MCSS) algorithm (Li and Zhang 2012; Li et al. 2013) is
employed in this paper so that a pre-classified image data set can be incorporated in
a cosimulation for more accurate classification. That is, the cosimulation serves as an
information updating step with new data layers (i.e., expert-interpreted sample data
and spatial correlation parameters) to improve or finalize the LULC classification.

The objectives of this study are: (1) to introduce the MCRF cosimulation method
for improving LULC classification accuracy by integrating pre-classified data and
expert-interpreted sample data, and (2) to demonstrate the workability of the method
through a simple case study with multiple sample data sets and a pre-classified image
data set generated by the SML algorithm. The ultimate goal of this study is to provide
a more practical and useful method for accurate LULC classification from remotely
sensed imagery with ancillary information.

2 Methods

2.1 Strategy and Classification Procedure

Reclassifying pre-classified images with additional information (or rules) is a tra-
ditional strategy for improving LULC classification accuracy, especially in expert
systems. The proposed MCRF cosimulation approach follows this general strategy,
but its specific methodology is different, as presented below.

An expert can interpret a sparse data set of class labels about the LULC classes
within a study area from a variety of related data (e.g., remotely sensed images, google
earth images, current local land use maps). In the meantime, a pre-classified image
data set also can be obtained from an available remotely sensed image with relatively
good quality using any conventional fast classification method. Thus, a co-located
cosimulation conditioned on the two data sets can be further conducted to achieve a
high-accuracy LULC classification in the study area. This means that a pre-classified
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image data set is used as an exhaustive auxiliary data set in our cosimulation so that the
spectral information of pixels without expert interpretation is utilized for improving the
remotely sensed LULC classification accuracy. In other words, an expert-interpreted
sample data set is used as an additional and accurate data set in our cosimulation to
update or finalize the pre-classified image data set to produce a more accurate classifi-
cation. The number and physical meanings of classes in the pre-classified image data
set may not be identical to those of the expert-interpreted data set. The former usually
should be classified according to the spectral separability of the image; however, the
latter may be decided based on the need of the study, availability of ancillary data and
interpretability of the classes by experts. Here, the expert-interpreted data for cosimu-
lation to improve the classification are different from the training data that are used in
supervised pre-classification of a remotely sensed image. Although expert-interpreted
data can be clusters or small areas of pixels, this kind of data is not suitable to use in
parameter (i.e., transiogram models in this study) estimation without declustering; in
addition, data of mixed pixels (i.e., class proportions in single pixels) are also difficult
to use for parameter estimation but may be used as conditioning data in simulation.

We hypothesize that pre-classified image data using a conventional classification
method (usually fast but may not be sufficiently accurate) are highly correlated to the
real but unknown LULC classes, and hence may be used as an auxiliary data set to
improve the classification of LULC through spatial cosimulation. Auxiliary data from
other sources, such as legacy map data, if highly correlated to the LULC classes to
be classified, may also be incorporated into the classification. The general framework
of the MCRF cosimulation approach for improving LULC classification accuracy is
illustrated in Fig. 1. Such a general approach is an improvement over Li and Zhang
(2011), which did not include auxiliary data. The proposed approach in this study
includes the following procedures:

1. interpret a sparse data set of pixel class labels from one or more related remotely
sensed images (e.g., a time series, multiple sources) and other auxiliary data based
on expert knowledge;

2. pre-classify a remotely sensed image (usually choose one with better quality among
available images) of the study area using a conventional fast method such as SML
to serve as the auxiliary data for cosimulation;

3. combine the interpreted pixel label data with possibly other high quality data
(e.g., ground observation data) as the final sample data set, and estimate a set of
transiogram models using the sample data (these transiogram models describe the
spatial auto and cross correlations among land cover classes in the sample data
set);

4. estimate the cross-field transition probability matrix from the sample data to the
auxiliary data set (or each set of auxiliary data if multiple sets are used) (these
transition rules describe the co-located cross correlations between the land cover
classes in the expert-interpreted sample data and the land cover classes in the
pre-classified image data);

5. conduct cosimulation conditioned on both the sample data and auxiliary data using
the Co-MCSS algorithm; and
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Fig. 1 Flowchart of the MCRF cosimulation approach for improving LULC classification from remotely
sensed imagery with expert-interpreted data. Expert knowledge may also be used in pre-classification (e.g.,
in choosing training data) and parameter estimation. Complementary pixel label data refer to those obtained
from other ways (e.g., ground observations)

6. analyze and visualize the simulated results into various maps, including optimal
classification maps, simulated realization maps, and occurrence probability maps.

Based on a number of simulated realizations, the probabilities of each uninformed
pixel belonging to different classes can be obtained. Because a variety of correlated data
and image information may be used through expert interpretation or as auxiliary data,
such a LULC classification approach is more comprehensive than are previous methods
and may generate more accurate classification results with quantified uncertainty.

2.2 Transiograms

Theoretically, a transiogram refers to a two-point transition (or conditional) probability
function over a lag distance

pi j (h) = Pr(z(u + h) = j |z(u) = i), (1)

where z(u) represents a realization of the random variable z(u), u represents a specific
location and h refers to the separate distance between the two spatial points. Under
the second-order stationarity assumption, pi j (h) is dependent only on h, not on the
specific location u. An auto-transiogram pii (h) represents the self-dependence (i.e.,
autocorrelation) of a single class i , and a cross-transiogram pi j (h) (i �= j) represents
the cross-dependence of class j on class i . However, experimentally a transiogram rep-
resents a series of transition probability values of the same pair of classes (i.e., states)
versus corresponding spatial separations, estimated from sample data. In addition,
transiograms also can be calculated from a single-step transition probability matrix if
available, and such transiograms are called idealized transiograms because they are
smooth curves based on the first-order stationary Markov assumption (Li 2007b).
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The word “transiogram” was abbreviated from the phrase “transition probability
diagram”. Under the inspiration of the variogram in classical geostatistics (Math-
eron 1963, 1973), the transiogram was initially proposed as a concept for the MCRF
approach (Li 2007a) and also as a method for estimating multi-step transition prob-
abilities or transition probability functions from sparse point sample data for two-
dimensional Markov chain simulation. It also served the purpose of directly condi-
tioning the simplified MCRF models to sparse sample data. One can see that when
the simplified general solution of MCRFs (Li 2007a) was derived, the transiogram
emerged naturally as an accompanying two-point spatial measure. Nevertheless, such
a spatial measure is related to pioneer studies that involved transition probability
curves (or functions) and model fitting of observed transition probability values (e.g.,
Schwarzacher 1969; Lou 1996; Carle and Fogg 1997; Ritzi 2000), particularly the
works of Carle and Fogg (1996, 1997) in transition probability-based indicator geosta-
tistics. Thus, the transiogram concept may cover all of these theoretical and experimen-
tal lagged transition probability curves. Li (2007b) addressed the concepts, types, basic
properties, physical meanings, estimation, and model fitting issues of transiograms
based on the Markov chain theory and pioneer studies.

2.3 MCRFs

A MCRF is a single spatial Markov chain that moves or jumps in a space (one to mul-
tiple dimensions) and decides its state at any uninformed location by interactions with
its nearest neighbors in various directions. The theory of a generalised MCRF was
initially proposed by Li (2007a), and further described from the Bayesian updating
perspective by Li et al. (2013). It is consistent with the Bayesian inference principle
(Bayes 1763; Gelman et al. 1995). Although the MCRF approach can be regarded
as a Bayesian spatial statistics (or geo-statistics), it is different from other existing
methods because Bayesian updating in MCRF models aims to approach the local
conditional probability distribution using the evidence of nearest data within a neigh-
borhood rather than to estimate parameters, and the updating process is performed in
a single sweep. The single-chain idea of MCRFs initially resulted from the effort to
revise the flaws of the coupled Markov chain model suggested by Elfeki and Dekking
(2001).

For a random variable Z (u) characterizing a MCRF, assuming i1 to im are the states
of the nearest known neighbors in different directions around an uninformed location
u0, the local conditional probability distribution of Z (u) at location u0 can be denoted
as p[i0(u0)|i1(u1), . . . , im(um)]. Here, a state in a Markov chain is equivalent to a class
of land cover, and m is the number of nearest neighbors in different directions within
a neighborhood. Emphasizing the single chain nature of a MCRF and its last visited
location, the local conditional probability distribution of Z (u) at current uninformed
location u0 can be factorized as

p[i0(u0)|i1(u1), . . . , im(um)] = 1

A
p[im(um)|i0(u0), . . . , im−1(um−1)]

· · · p[i2(u2)|i0(u0), i1(u1)]p[i0(u0)|i1(u1)] (2)
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Fig. 2 Illustrations of neighborhood structures and sequential Bayesian updating processes in basic
MCRFs: a assuming u1 to be the last visited location; b assuming the last visited location is far away (out-
side the neighborhood). Data interactions across the uninformed location u0 being estimated are ignored
based on the Markov property

based on Bayes’ theorem (Bayes 1763), where A = p[i1(u1), . . . , im(um)]/p[i1(u1)]
is a constant, and u1 is the last visited location or the location that the spatial Markov
chain goes through to the current location u0 (Fig. 2a) (Li 2007a). Equation (2) is the
full general solution of the local conditional probability distribution of MCRFs. Here,
p[i0(u0)|i1(u1), . . . , im(um)] is the posterior probability distribution, p[i0(u0)|i1(u1)]
is the prior probability distribution, and the remaining part of the right hand side of
Eq. (2) excluding the constant is the likelihood component. The likelihood component
comprises multiple likelihood functions, each for one nearest known neighbor except
for the last visited location. Therefore, Eq. (2) is essentially in the form of

posteior ∝ likelihood [im(um)] × · · · × likelihood [i2(u2)] × prior, (3)

where the likelihood functions represent a process of sequential Bayesian updating on
different nearest data within a Markov-type neighborhood. Each nearest datum repre-
sents new evidence that may be used to update previous belief in the local probability
distribution of Z (u) at uninformed location u0 to make it closer to the truth. How close
the final local probability distribution (i.e., the final posterior) is to the truth depends on
how much related evidence is available. The sequential updating process starts from
nearest neighbor i2(u2) and ends at nearest neighbor im(um) within a Markov-type
neighborhood around the uninformed location u0 (Fig. 2a). The updating process may
not need to follow a fixed ordering of nearest neighbors, because earlier considered
nearest neighbors become the conditioning data of later updatings, and all updatings
are conditioned on the datum i0(u0) being estimated. Such a sequential Bayesian
updating on nearest spatial data within a neighborhood is one of the major character-
istics of MCRFs. It should be clarified that “sequential Bayesian updating” here is just
an explanation of Eq. (2) using the Bayesian view, rather than an iterative process in
computation.

If the last visited location is far away and the spatial Markov chain is first-order
stationary (i.e., the transition probabilities from the last visited location to the current
location decay to corresponding marginal probabilities), the last visited location in
Eq. (2) can be ignored. Supposing that there are still m nearest neighbors in different
directions around the uninformed location u0, we have
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Fig. 3 Spatial structures of a size-4 neighborhood in a MCRF and its simplified forms based on Markov
property and conditional independence assumption: a four nearest neighbors approximately located in four
cardinal directions; b data interactions across the uninformed location u0 are ignored; and c data interactions
between nearest neighbors are ignored

p[i0(u0)|i1(u1), . . . , im(um)] = 1

A
p[im(um)|i0(u0), . . . , im−1(um−1)]

· · · p[i1(u1)|i0(u0)]p[i0(u0)], (4)

where A = p[i1(u1), . . . , im(um)] is a constant, u1 is a nearest neighbor, and p[i0(u0)]
represents the marginal probability distribution of state or class i0. Compared to Eq.
(2), the prior probability distribution of Eq. (4) becomes p[i0(u0)], and it has one more
likelihood function -p[i1(u1)|i0(u0)]. Therefore, Eq. (4) is in the form of

posteior ∝ likelihood [im(um)] × · · · × likelihood [i2(u2)]
× likelihood [i1(u1)] × prior. (5)

The Bayesian updating process starts from nearest neighbor i1(u1) and ends at nearest
neighbor im(um) in a Markov-type neighborhood around the uninformed location u0
(Fig. 2b).

The full solution of MCRFs, Eq. (2), and its special case, Eq. (4), both comprise a
series of two to m+1 point spatial structures that involve the uninformed location u0,
such as p[im(um)|i0(u0), . . . , im−1(um−1)] and p[i2(u2)|i0(u0), i1(u1)]. Therefore,
they are essentially spatial models of multiple-point statistics at the neighborhood
level and these multiple-point statistics are in the form of multiple-point conditional
probabilities. Even though only four nearest known neighbors are considered, they
still involves two to five point structures (Fig. 3a), that are functions of directional lag
distances because these points may not be adjacent in a sparse or inexhaustive data
space. Therefore, without simplification the local conditional probability distribution
functions of Z (u) for a specific unsampled location are difficult to compute from sparse
sample data. However, it is worth mentioning that multiple-point statistics had been
used in the multiple-point geostatistical methods emerged in recent years, mainly for
mapping subsurface curvilinear features, where multiple-point statistics were directly
estimated from training images using defined data templates (Strebelle 2002); more
recently, Dimitrakopoulos et al. (2010) suggested a kind of high-order (i.e., multiple-
point) statistics - spatial cumulants, and provided their computation methods. These
studies may provide the prospects for implementing the MCRF approach as a new
multiple-point geostatistical approach.
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Applying the conditional independence assumption of nearest known neighbors to
Eq. (2), a simplified general solution for MCRFs, which is directly computable from
sparse sample data, can be derived as

p[i0(u0)|i1(u1), . . . , im(um)] = pi1i0(h10)
∏m

g=2 pi0ig (h0g)
∑n

f0=1 [pi1 f0(h10)
∏m

g=2 p f0ig (h0g)] , (6)

where pi0ig (h0g) represents a transition probability function (i.e., transiogram) from
class i0 at location u0 to class ig at location ug with a distance lag h0g; i1(u1) represents
the nearest known neighbor from or across which the Markov chain moves to the
current uninformed location u0; m represents the number of nearest known neighbors
including the last visited location; i and f represent states (or classes) in the state
space S = (1, . . ., n). Equation (6) is still in the Bayesian inference formula, with
p[i0(u0)|i1(u1), . . . , im(um)] being the posterior distribution, pi1i0(h10) being the
prior distribution, the denominator being the constant and the remaining part of the
right hand side being the likelihood component. Figure 3 provides a case of MCRF
models with m = 4 and its simplified forms using the Markov chain property and the
conditional independence assumption.

Similarly, with the conditional independence assumption of nearest known neigh-
bors, Eq. (4) becomes

p[i0(u0)|i1(u1), . . . , im(um)] = pi0

∏m
g=1 pi0ig (h0g)

∑n
f0=1 [p f0

∏m
g=1 p f0ig (h0g)] , (7)

where pi0 is the marginal probability of class i0. Equation (7) also can be simply
derived from Eq. (6) by assuming pi0i1(h01)pi0/pi1 = pi1i0(h10). Therefore, Eq.
(7) is a special case of Eq. (6). Compared to Eq. (6), the prior distribution in Eq. (7)
becomes pi0 . With second-order spatial stationarity assumption and non-unidirectional
transiograms, Eqs. (6) and (7) are identical.

Equations (6) and (7) do not consider the clustering effect of data. Apparently clus-
tered nearest neighbors largely deviate from the conditional independence assumption
and may impact the estimates of local conditional probability distributions. There-
fore, dealing with this issue is necessary in algorithm design with either of these two
equations.

2.4 MCRF Cosimulation Model

Similar to cokriging models in classical geostatistics (Matheron 1971; Goovaerts
1998), MCRF cosimulation models (Co-MCRFs) also can be established through
extending the MCRF solutions. Bayesian thinking has been used in classical geosta-
tistics for incorporating soft data since 1980s (Omre 1987; Christakos 1990). Based on
the Bayesian inference principle (Bayes 1763), a Co-MCRF model may be regarded
as the Bayesian update of a MCRF model based on new evidence of auxiliary data. In
this study, our main focus is the MCRF cosimulation model.

Assume X is a target categorical variable to be estimated and E is an auxiliary data
set, the Bayesian inference formula for this knowledge updating can be written as
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P(X |E) = P(E |X)P(X)

P(E)
= P(E |X)P(X)

∑
X P(E |X)P(X)

= C−1 · P(E |X) · P(X) (8)

where C = ∑
X P(E |X)P(X) is a constant; P(X) is the local probability distribution

of X , which serves as the prior here and can be estimated by Eq. (2) or its simplified
forms; P(E |X) is the probability of observing E given X , that is, the likelihood term to
update the prior with new evidence of E . Because a MCRF model is a spatial Bayesian
model at the neighborhood level with sequential Bayesian updating on different nearest
data, the incorporation of an auxiliary data set in a Co-MCRF model is essentially a
further Bayesian update to a MCRF model. Ecan be a set of auxiliary variables. For
n mutually independent auxiliary variables E = {e1, . . ., en}, we have

P(X |E) = P(E|X)P(X)
∑

X P(E|X)P(X)
= P(X)

∏
k P(ek |X)

∑
X P(X)

∏
k P(ek |X)

. (9)

Based on above Bayesian principle, the simplified general solution, Eq. (6), can be
expanded into a Co-MCRF model to incorporate auxiliary data through cosimulation.
The contributions of auxiliary variables may be incorporated through different meth-
ods. In this study, the data of auxiliary variables are regarded as nearest neighbors of
the uninformed location u0 in other variable spaces. Only the co-located cosimulation
case is considered, as illustrated by Fig. 4a, because it is what we need for improving
LULC classification while the involved auxiliary variables provide exhaustive data.
The co-located Co-MCRF model with k auxiliary variables can be written as

p[i0(u0)|i1(u1), . . . , im(um); r (1)
0 (u1

0), . . . , r (k)
0 (uk

0)]

=
pi1i0(h10)

∏m
g=2 pi0ig (h0g)

∏k
l=1 q

i0r (l)
0

∑n
f0=1 [pi1 f0(h10)

∏m
g=2 p f0ig (h0g)

∏k
l=1 q

f0r (l)
0

] , (10)

where r (k)
0 represents the state of the kth auxiliary variable at the co-location uk

0, and
q

i0r (k)
0

represents the cross transition probability from class i0 at location u0 in the

primary variable space to class r0 at the co-location uk
0 in the kth auxiliary variable

space. The cross transiograms from the primary variable to auxiliary variables reduce
to cross transition probabilities due to the co-location property. This kind of cross tran-
sition probability (or transiogram) between classes of two different spatial variables
is called a cross-field transition probability (or transiogram) (Li et al. 2013). Because
the co-located datum of an auxiliary variable is in another variable space, it may be
assumed to be conditionally independent of the nearest neighbors of the uninformed
location u0 in the primary variable space. The cross-field transition probabilities from
the primary variable to each auxiliary variable, however, must be estimated separately.
In this equation, the cross correlations between auxiliary variables are not dealt with
and they are practically assumed to be independent of each other.

In this study, only one auxiliary variable, a pre-classified remotely sensed image
data set generated by a conventional classification method, is considered. Hence, Eq.
(10) further reduces to
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Fig. 4 Illustrations of the simplified MCRF cosimulation model with conditional independence assumption
(a) and the co-located Co-MCSS algorithm with one auxiliary variable (b). Double arrows represent the
moving directions of the spatial Markov chain. Dash arrows represent the interactions of the spatial Markov
chain with nearest known neighbors and co-located auxiliary data

p[i0(u0)|i1(u1), . . . , im(um); r0(u0)] = qi0r0 pi1i0(h10)
∏m

g=2 pi0ig (h0g)
∑n

f0=1 [q f0r0 pi1 f0(h10)
∏m

g=2 p f0ig (h0g)] .
(11)

This model still can be regarded as a Bayesian inference model. Compared to Eq.
(6), this Co-MCRF model uses one more data layer—an auxiliary data set, where
each co-located datum may be regarded as new evidence for further updating the local
conditional probability distribution.

2.5 MCRF Co-Located Cosimulation Algorithm

In real applications, it is unnecessary and difficult to consider many nearest known
neighbors in different directions. For those nearest known neighbors outside cor-
relation ranges and those approximately located in the same directions with small
separate angles but not the closest to the uninformed location u0 being esti-
mated, they can be canceled in Eq. (11). Thus, m can be much smaller than
the real number of nearest known neighbors in different directions. In addi-
tion, Eq. (11) was based on a general conditional independence assumption that
does not hold for clustered data because it ignores data configuration. Thus,
dealing with data clustering effect may be necessary in simulation algorithm
design.

For dealing with pixel data from remotely sensed imagery, considering four car-
dinal directions can be sufficient. If only the four nearest known neighbors in the
four cardinal directions within a search circle are considered, Eq. (11) can be further
simplified to
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p[i0(u0)|i1(u1), . . . , i4(u4); r0(u0)] = qi0r0 pi1i0(h10)
∏4

g=2 pi0ig (h0g)
∑n

f0=1 [q f0r0 pi1 f0(h10)
∏4

g=2 p f0ig (h0g)]
.

(12)
In the above equation, it is assumed that the last visited location of the spatial Markov
chain is always within the four nearest neighbors; if it is not, we assume the spatial
Markov chain comes through one of them. Equation (12) assumes conditional inde-
pendence of the four nearest neighbors in the four cardinal directions (Fig. 3c). Such
a conditional independence assumption holds for lattice data in some Markov random
fields, such as Pickard random fields (Pickard 1980; Rosholm 1997), and is applicable
to sparse data situation (Li 2007a).

Because the interpreted sample pixel label data are usually sparse, the nearest known
neighbors in a neighborhood may not be exactly located along cardinal directions.
Therefore, relaxation in cardinal directions is needed. To cover the whole space of a
search circle, sectors can be used to replace cardinal directions, that is, seeking one
nearest known neighbor from each sector to compose the neighborhood. For the four
cardinal directions, the corresponding sectors are four quadrants. There may be no
data in some quadrants within a search range at the boundary areas or at the beginning
of a simulation when sample data are too sparse; thus, the size of the neighborhood
may sometimes be less than four. Equation (12) can adapt to the situation. In case
no data can be found in the entire search circle, we assume the spatial Markov chain
comes from a location outside the search range.

Sequential simulation (Johnson 1987) means that at an unsampled location, the
estimation of the local conditional probability distribution incorporates both original
sample data and previously simulated data within a neighborhood so that simulated
data are directly related to each other, but the specific estimation model may be various.
Such a simulation strategy has been widely used in conventional geostatistics for
stochastic simulations, such as the sequential indicator simulation algorithm (Deutsch
and Journel 1992; Goovaerts 1996). The MCSS algorithm was developed based on the
above quadrant search method for nearest data and the sequential simulation strategy
using the simplified MCRF model (i.e., Eq. (6)) as its estimator, and it was effective in
stochastic simulations of categorical fields (Li and Zhang 2007). For the co-located Co-
MCSS algorithm, the sequential simulation procedure is similar to that for the MCSS
algorithm, except that an auxiliary data set is conditioned through the co-located Co-
MCRF model (Fig. 4b). Fortran PowerStation computer code was developed for the
computation algorithm, but image visualization has to use ArcGIS.

2.6 Transiogram Models and Cross-Field Transition Probability Matrix

To perform simulation using the Co-MCRF model (i.e., Eq. (12)) requires a set of
transiogram models. To get transiogram models, we need to first estimate the experi-
mental transiograms from sample data. An experimental transiogram can be estimated
using the following equation

p̂ik(h) = Fik(h)
∑n

j=1 Fi j (h)
, (13)
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where Fik(h) represents the frequency of transitions from class i to class k at the lag
distance h, and n is the total number of classes in a categorical field.

Different methods were suggested to obtain transiogram models from experimental
transiograms (Li and Zhang 2010). One is non-parametric, using an interpolation or
smoothing method to get continuous models from experimental transiograms. The sec-
ond is parametric, using mathematical models to fit most experimental transiograms,
with one in each row of a transiogram matrix to take the left potion of unity. The
non-parametric linear interpolation method is suitable when samples are relatively
abundant and experimental transiograms are reliable. The parametric method is widely
applicable, but it is relatively tedious when many classes are involved. In this study,
the linear interpolation method (Li and Zhang 2010) was used because it is efficient
and the data set of the expert-interpreted pixel labels is usually sufficient for estimating
reliable experimental transiograms in real applications. Carle and Fogg (1996, 1997)
suggested two methods for joint modeling of experimental transiograms: One is the
transition rate method, which was used in application studies (Weissmann and Fogg
1999), and the other is the random transition probability model (Carle and Fogg 1996,
p. 463). However, these two methods are oversimplified for complex landscapes like
LULC patterns, and are not as efficient as the linear interpolation method.

For co-located cosimulation conditioned on one auxiliary variable, a cross-field
transition probability matrix (CTPM) from the sample data set to the co-located aux-
iliary data set is needed (Li et al. 2013). A transition probability in the CTPM can
be estimated by counting the point-to-point frequency of a pair of classes from the
sample data of the primary variable to the co-located data of the auxiliary variable
using the following equation

q̂ik = fik
∑n

j=1 fi j
, (14)

where fik represents the frequency of transitions from class i of the primary variable
to class k of the auxiliary variable, and n is the number of classes of the auxiliary
variable.

3 Test Data and Parameters

3.1 Data

The case study was performed in a small area of 1.035 km2, which is located in
the suburb of Wuhan city, Hubei, China (Li and Zhang 2011). Here, only one high-
quality high-resolution remotely sensed image was used to test the proposed method.
For the convenience of display, the remotely sensed raster image used for testing is
a small piece, having a 234 × 192 grid lattice with a pixel size of 4.8 m × 4.8 m
(Fig. 5a). In the image, three LULC classes can be easily differentiated by human
eyes. These classes are (1) farmlands (mainly planted with vegetables), (2) built areas
(i.e., villages), and (3) waterbodies (i.e., ponds). Therefore, these three LULC classes
will be considered in the study area. However, farmlands comprise numerous patches
with different vegetables and different management practices including greenhouses,
which result in different spectral responses at different places. In villages, buildings
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Fig. 5 The original remotely sensed image (a), pre-classified image using the supervised maximum like-
lihood algorithm (b), and expert-interpreted pixel label data sets (c a dense data set, d a sparse data set)

speckled by trees also show varied spectral responses. The spectral responses of water
bodies are relatively identical, except that some small shallow ponds are not very clear.
Although the general pattern is simple, it is still difficult to accurately classify image
pixels into the three LULC classes purely based on confusing and overlapping spectral
responses.

To test the proposed Co-MCSS algorithm, 1591 data points were interpreted from
the high resolution image using ArcGIS and used as sample data. This extra-dense data
set was then split into two subsets—one dense data set (813 data points, Fig. 5c) for
conditional cosimulation and the other data set (778 data points) for validation. From
the dense data set, a medium data set (406 data points), a sparse data set (203 data point,
Fig. 5d), an extra-sparse data set (100 data points) and an extreme-sparse data set (50
data points) were extracted for conditional cosimulation. Unconditional cosimulation
was regarded as a conditional cosimulation on a zero data set. These six data sets
accounted for 0 to 1.81 % of the total image pixels in the study area and were assumed to
be expert-distinguishable pixels that could be interpreted confidently from the remotely
sensed imagery. They were regarded as hard data (similar to ground observations), and
were used for transiogram estimation. Cosimulations were subsequently conducted on
each of these data sets.
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The same image was pre-classified into three LULC classes with the same names
using the SML classifier (Fig. 5b), and the pre-classified data served as an auxil-
iary exhaustive data set. One may obtain such an auxiliary data set using any con-
ventional classification method (including unsupervised methods) to pre-classify the
image, where the class number of auxiliary data may be different from that of expert-
interpreted sample data and the classes need not have the same physical meanings as
those of sample data have. However, the classes of the pre-classified image should be
well-correlated with the classes of the expert-interpreted land cover sample data for
improving classification accuracy.

These data sets were only used for testing the proposed method, and were not a real
application study. One may assume that in a real application, such sample data could
be interpreted by experts from one or multiple images with other auxiliary information
(e.g., local land use maps) for the same area, and the image used for pre-classification is
a relative good and current one, selected from those available remotely sensed images
for the study area.

3.2 Parameters

Omni-directional experimental transiograms were estimated from each of the dense
and medium data sets, and were interpolated into continuous transiogram models, some
of which were shown in Li and Zhang (2011). Because there is no identical anisotropy
and asymmetry direction for all classes in the study area, it is unnecessary to consider
estimating multiple sets of directional transiograms. The sparser data sets were too
small to generate reliable experimental transiograms, so for the method testing purpose
the transiogram models estimated from the dense data set were used for the simulations
conditioned on sparser data sets. It is also preferable to use identical parameters for
comparison purpose. In real applications, if samples are too sparse to generate reliable
transiogram models, expert knowledge should be used to obtain transiogram models
(Li and Zhang 2010).

The CTPM from the classes of expert-interpreted sample data to the classes of the
pre-classified data set is provided in Table 1. In the pre-classified data set, the expert
recognized farmlands and built areas classes were not effectively differentiated from
each other, but none of them were classified into waterbodies, and the expert recog-
nized waterbodies class was completely discriminated from farmlands, although some

Table 1 Cross-field transition probability matrix from classes of expert-interpreted sample data (in first
column) to classes of pre-classified data (pre-classification was conducted using the supervised maximum
likelihood classifier) (in first row)

Class A1 (farmlands) A2 (built areas) A3 (waterbodies)

S1 (farmlands) 0.8325 0.1675 0.0000

S2 (built areas) 0.2684 0.7316 0.0000

S3 (waterbodies) 0.0000 0.2736 0.7264

S1 Class 1 of expert-interpreted sample data, A1 Class 1 of pre-classified image data
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areas of this class were still classified into built areas. Due to the relatively accurate
discrimination of the waterbodies class in the pre-classification, it is expected that this
auxiliary data set will provide stronger supportive information for the classification of
waterbodies in the co-located cosimulations.

4 Results and Analysis

4.1 Supervised Maximum Likelihood Classification

The SML classification generated relatively good results due to the simplicity of the
image (Fig. 5b). However, some patches of farmlands were still classified as the class
of built areas due to spectral overlap, and some non-building areas within or around
villages (mainly woods) were classified as farmlands. In addition, some shallow ponds
were classified as other two classes. The accuracy of this LULC map classified by SML
is 77.63 % based on the validation data set of 778 interpreted pixel label data. This
supervised classification accuracy is normal because the spectral responses over the
areas of the three LULC classes have overlaps.

4.2 Simulated Results by Co-MCSS

A simulation search radius of 30 pixel-lengths was chosen for the dense and medium
sample data sets, and that of 60 pixel-lengths for the sparser sample data sets, after
some testing simulations. Because only four nearest neighbors in four quadrants are
considered in the final simulation algorithm, a large radius is not necessary when the
density of conditioning data is not very low. If conditioning data are very sparse, the
search radius should approximate the largest correlation range among all auto/cross
transiogram models of land cover classes. For the pixel label data in this study, the
radius length of 60 pixels used for sparse sample data sets reached or surpassed the
correlation ranges of most transiogram models (Li and Zhang 2011). For each of the six
interpreted sample data sets (from dense to zero), 100 realisation maps were simulated
using Co-MCSS and a set of occurrence probability maps for all LULC classes were
further estimated. An optimal classification map was obtained for each sample data set
on the basis of maximum occurrence probabilities estimated from the 100 simulated
realisations. The computation time for a simulation (i.e., generating 100 realisations
and other related maps) is usually a few minutes.

The six optimal classification maps (Fig. 6) show that when the expert-interpreted
sample data is dense, all three LULC classes were well-captured compared to the orig-
inal image (Fig. 5a). With decreasing density of sample data, the built areas gradually
deviated from their real shapes at boundaries. However, the general pattern was not
much altered and water bodies were always well-classified, except for two shallow
ponds that were not captured by the SML classification. Even when no sample data
were used for conditioning, the general pattern of the LULC classes and the approxi-
mate shapes of water bodies were captured in classification. This should be attributed
to the contribution of the auxiliary data set, that is, the pre-classified image by SML,
and the spatial correlation information provided by transiogram models. Comparing
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Fig. 6 Optimal classification maps based on maximum occurrence probabilities generated by Co-MCSS.
Simulations were conditioned on pre-classified image data and respectively six different expert-interpreted
sample data sets (green farmlands, brown built areas, blue waterbodies)

their classifications against the validation data indicates that these optimal classifica-
tion maps have high accuracies (i.e., percentages of correctly classified pixels), ranging
from 86.12 to 98.59 %, demonstrating much improvement over the conventional SML
classification (Table 2). Even when very sparse (e.g., 0.2 % of the total pixels) or
zero sample data are available, Co-MCSS still can improve the classification accuracy
(10 % or so for optimal classification maps) compared to the SML method. Interpreting
a sparse sample data set from remotely sensed imagery with other auxiliary data (e.g.,
existing land use maps, google earth images) for a study area may not be very difficult
and the gain in classification accuracy seems huge. This indicates the possible practi-
cality of the MCRF approach in LULC classification from remotely sensed imagery
and auxiliary information. Moreover, the incorporation of pre-classified image data
through cosimulation makes the approach less labor-intensive to acquire higher clas-
sification accuracy over conventional classification methods.

Generating a number of simulated realizations is the advantage of stochastic sim-
ulation methods. Simulated realization maps do not have the smoothing effect of
optimal maps and are usually regarded as “possible realities” of a spatial variable
under study. Differences in simulated patterns of a number of realizations indicate
the uncertainty in spatial distribution of LULC classes in the study area, which is
mainly caused by the ambiguity of pixel signatures. Therefore, the aim of a stochas-
tic simulation is to capture the greatest spatial heterogeneity rather than to pursue
high classification accuracy. A major value of simulated realizations is that they can
be used as input data to study the propagation of uncertainty through ecological or
hydrological models (Goovaerts 1996). Figure 7 shows some simulated realizations
based on the dense, sparse and extreme-sparse data sets of the interpreted pixel labels.
These realizations indicate more details than their corresponding optimal classification
maps because the latter are essentially reflections of classes with maximum occurrence
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Fig. 7 Simulated realization maps by Co-MCSS. Simulations were conditioned on pre-classified image
data and respectively three different expert-interpreted sample data sets (note that a and b, c and d, and e
and f are three pairs, with each pair of realizations being conditioned on the same sample data set). Color
codes as in Fig. 6

Fig. 8 Comparison of optimal classification maps generated by Co-MCSS (a–d) and MCSS (e–h). Simu-
lations by Co-MCSS were conditioned on pre-classified image data and different expert-interpreted sample
data sets. Simulations by MCSS were only conditioned on different expert-interpreted sample data sets.
Color codes as in Fig. 6

probabilities. Differences in pattern details between realizations can be seen and also
increase with decreasing number of interpreted pixels. Consequently, the average clas-
sification accuracy of realizations decreases from 97.76 to 75.63 % with decreasing
density of interpreted sample data from 1.81 to 0 % (Table 2). Although the classifi-
cation accuracies of realization maps are lower than those of corresponding optimal
maps, they are still higher than the accuracy of the SML classification map as long as
some interpreted sample data are available. Realization maps generated by Co-MCSS
represent improvements in accuracy over the SML classification map.
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Fig. 9 Occurrence probability maps of land use class 1 (i.e., farmland), estimated from one hundred of
simulated realizations by Co-MCSS

4.3 Comparison with Simulated Results by MCSS

The incorporation of pre-classified data represents an important boost to the practical-
ity of the MCRF approach for LULC classification. To demonstrate the improvement,
we made a comparison with the simulated results by the MCSS algorithm, which
does not incorporate pre-classified image data. Figure 8 shows some optimal classifi-
cation maps generated by both Co-MCSS (Fig. 8a–d) and MCSS (Fig. 8e–h). When
sample data are dense, both methods generate similar optimal classification maps.
When sample data are very sparse, Co-MCSS accurately capture the pattern of LULC
classes, while MCSS do not. When no sample data are available, Co-MCSS captures
the general pattern of the three classes, but MCSS cannot generate meaningful data.
In addition, because the waterbodies class in the pre-classified data set is relatively
well-captured, the feature of this class is always effectively reproduced by Co-MCSS.
Consequently, classification accuracies by Co-MCSS show significant improvements
over those by MCSS, and the improvement is particularly large when sample data
are sparse (Table 2). Apparently, this is attributed to the contribution of the good
pre-classified data. The MCSS algorithm for LULC classification is relatively labor
intensive for real world applications. It mainly demonstrated the promising prospect
of the development of the MCRF approach in remotely sensed image classification.
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Fig. 10 Maximum occurrence probability maps of land use/land cover classes, estimated from a hundred
simulated realizations by Co-MCSS, conditioned on pre-classified image data and different sample data
sets

However, the addition of the cosimulation function, that is, the Co-MCSS algorithm,
to the MCRF approach improves performance.

4.4 Uncertainty Assessment

Quantifying spatial uncertainty is the major advantage of stochastic simulation meth-
ods. Co-MCSS can generate a large number of simulated realizations, from which
occurrence probabilities of each class at every location can be estimated. Realization
maps only qualitatively indicate the spatial uncertainties associated with a classifica-
tion. The occurrence probability maps quantitatively illustrate where and with how
much probability (or how large proportion) a LULC class may occur, and also indicate
the areas of clustered occurrence of a class (i.e., the dark areas). Figure 9 shows the
occurrence probability maps of farmlands (i.e., class 1) conditioned on four different
sample data sets. They display where this class has more chances to occur. The uncer-
tainty increases with decreasing sample data. Even when no sample data are available,
the correlation information with the auxiliary data still can support classification and
make occurrence probabilities of the class vary over the study area. Therefore, occur-
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rence probability maps are more efficient and vivid in representing uncertainty than
are realization maps.

Figure 10 shows maximum occurrence probability maps conditioned on four dif-
ferent sample data sets. A maximum occurrence probability map comprises maximum
single-class occurrence probabilities among all classes at all locations. It quantifies the
credibility of the corresponding optimal classification map at every pixel. The higher
the probability at a pixel, the less uncertainty that is associated with the pixel class
label. It also clearly indicates the transition zones (i.e., shallow gray stripes) between
clustered areas of pixels of different classes. Apparently, overall uncertainty increases
with decreasing density of sample data.

5 Conclusions and Discussion

A MCRF cosimulation approach for improving classification accuracy of LULC
classes from remotely sensed imagery was introduced. The approach employs the
Co-MCSS algorithm for integrating a pre-classified image data set generated by a
conventional classification method and an expert-interpreted sample data set to obtain
an improved LULC classification. The approach was tested using a case study, includ-
ing six expert-interpreted LULC sample data sets and a pre-classified image data set
generated by the SML algorithm. Classification accuracies were calculated using a
validation data set that was also expert-interpreted pixel class label data. Compared
to the pre-classification, which had an accuracy of 77.63 %, the classification accu-
racy of optimal prediction maps generated by the Co-MCSS algorithm improved by
8.49 to 20.96 % with increasing density of expert-interpreted sample data (from 0
to 1.81 % of total pixels), generally reaching an accuracy of above 90 % when one
thousandth of total pixels were interpreted. A comparison with the MCSS algorithm,
which does not incorporate a pre-classified image data set, shows that Co-MCSS may
capture the geometric shapes of LULC class patterns to some extent and can lead to
substantial improvement in classification accuracy, especially when expert-interpreted
sample data are sparse. In fact, through the integration of expert-interpreted sample
data, estimated transiogram models, and pre-classified data, Co-MCSS essentially may
utilize expert knowledge, contextual information, spectral information, textural infor-
mation and multi-source data. Consequently, it can perform highly accurate LULC
classifications. Co-MCSS also can quantify the spatial uncertainty associated with a
classification as a set of occurrence probability maps, that provide additional valuable
information.

The approach may be understood from different perspectives. If we focus on the sto-
chastic cosimulation and the expert-interpreted sample data, the pre-classified image
data set serves as an auxiliary data set to improve simulation accuracy. However, if we
focus on the pre-classified image data set, the expert-interpreted sample data may be
regarded as an accurate data layer for updating the pre-classification. In general, the
approach may combine the Co-MCSS algorithm with any conventional LULC clas-
sification method to use expert-interpreted sample data to improve a classification.
Even when no sample data or very few sample data are available, it still may improve
classification accuracy due to the contribution of the spatial correlation information
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provided by transiogram models if they are available (e.g., from expert knowledge).
Considering that LULC maps generated by conventionally used LULC classification
methods from remotely sensed imagery often cannot reach sufficient quality and that
it is not difficult for experts to interpret a highly accurate sample data set of LULC
classes for a study area from various available data sources, the proposed approach may
have great promise to be a valuable and practical method for improving LULC classi-
fication accuracy. Nevertheless, data collection is always time-consuming. Parameter
estimation, simulation, and data processing also take time. This labor and time cost
is the trade-off for an improved classification accuracy and uncertainty assessment,
which have been difficult to achieve by faster classification methods purely based on
image spectral information.

Besides the popular SML classifier which was used to create the pre-classified data
set from a remotely sensed image in the case study, any other existing classifiers can
be used to perform the pre-classification. Thus, the classification accuracy generated
by the proposed approach depends on the expert-interpreted sample data as well as the
quality of the pre-classification. If the pre-classification is already of very high quality,
the accuracy improvement added by the cosimulation with expert-interpreted sample
data may not be appreciable. Under this situation, users must decide whether they
will use the proposed cosimulation approach to make further classification improve-
ment. Considering that some LULC classes (e.g., farmlands with different cropping
situations), particularly the second level LULC classes, are difficult to differentiate
automatically from remotely sensed imagery, the proposed approach may be a good
tool for experts to use to revise a classification. Thus, the approach may be more use-
ful in areas where remotely sensed imagery is difficult to classify accurately without
expert involvement or even field observations. In addition, the approach used expert-
interpreted sample data as hard data in cosimulation, while they may also contain
uncertainty. Thus, the uncertainty brought by expert interpretation was not taken into
account in uncertainty assessment.

Although only the interpreted sparse pixel label data were used as sample data,
other data types (e.g., small area data, mixels’ class proportion data, and ground
observations) can also be incorporated into the cosimulations as conditioning data.
The land cover classification accuracy data provided in Table 2 are the results of the
simple case study for testing and demonstrating the proposed method. For a large area
characterized as a complex landscape with many classes, the classification accuracy
may not be so high given the same density of expert-interpreted sample data, due to
the corresponding low accuracy of pre-classified image data.
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