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Abstract Multi-dimensional Markov chain conditional simulation (or interpolation)
models have potential for predicting and simulating categorical variables more accu-
rately from sample data because they can incorporate interclass relationships. This
paper introduces a Markov chain random field (MCRF) theory for building one to
multi-dimensional Markov chain models for conditional simulation (or interpola-
tion). A MCRF is defined as a single spatial Markov chain that moves (or jumps)
in a space, with its conditional probability distribution at each location entirely de-
pending on its nearest known neighbors in different directions. A general solution for
conditional probability distribution of a random variable in a MCRF is derived ex-
plicitly based on the Bayes’ theorem and conditional independence assumption. One
to multi-dimensional Markov chain models for prediction and conditional simulation
of categorical variables can be drawn from the general solution and MCRF-based
multi-dimensional Markov chain models are nonlinear.

Keywords Multi-dimensional Markov chain · Markov random field · Conditional
simulation · Interclass relationship · Nonlinear · Conditional independence

Introduction

Multi-dimensional (multi-D) Markov chain conditional simulation models have great
potential for more accurately predicting and simulating categorical variables such as
soil types, land cover classes and lithofacies from sample data. This is because they
can easily incorporate interclass relationships through cross transition probabilities.
Interclass relationships make up a large portion of spatial heterogeneity information
conveyed by sampled categorical data and incorporating them into simulations is
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crucial for effectively capturing spatial patterns of complex categorical variables (so-
called multinomial classes) from limited samples.

Earlier multi-D Markov chain models such as Lin and Harbaugh (1984) in ge-
ology and Qian and Titterington (1991) in image texture analysis did not condition
a simulation on sample data. Recently, a nonlinear 2-D Markov chain conditional
simulation approach was developed for simulating categorical variables from survey
lines data (Li et al. 2004; Zhang and Li 2005). Further extension of this approach
to interpolation and conditional simulation of categorical variables from grid point
samples can be found in Li et al. (2005) and Li and Zhang (2005), respectively.

The triplex Markov chain (TMC) model proposed by Li et al. (2004) considered
four nearest known neighbors in four cardinal directions and it was built on the cou-
pled Markov chain (CMC) idea of Elfeki and Dekking (2001) in calculating the con-
ditional probability distribution (CPD) of a random variable at an unknown location.
The CMC model coupled two 1-D Markov chains together with an independence as-
sumption. Major merits of the CMC model are its simplicity and conditioning idea
(i.e., conditioning on a future state), which were retained by the TMC model. Ma-
jor deficiencies of the CMC model include directional effect (i.e., pattern inclination
or diagonal trend) and underestimation of small classes (Li et al. 2004). The direc-
tional effect problem was actually a long-standing problem in unconditional multi-D
Markov chain simulations in image texture analyses, which was caused by asym-
metric neighborhoods used in simulations (Gray et al. 1994). The TMC model effec-
tively overcame the directional effect problem with an alternate advancing (AA) path,
and weakened the small-class underestimation problem. Thus, when sufficient data
were conditioned, it not only could capture complex spatial patterns of multinomial
classes but also approximately reproduce auto and cross variograms or transiograms.
Here transiograms refer to transition probability diagrams, which provide a way to
estimate transition probabilities with different lags from sparse samples (Li 2006;
Li and Zhang 2005). With generalization of the TMC model through transiograms,
a middle insertion path was found also effective in overcoming the directional effect
problem (Li and Zhang 2005). It should be noted that the directional effect problem
was also encountered in extending 1-D autoregressive processes into multiple di-
mensions, and the herringbone method was proposed to effectively solve the problem
(Turner and Sharp 1994; Sharp and Turner 1999). The herringbone method suggested
alternating the direction of propagation of the process from lattice row to lattice row
in the form of a herringbone pattern so that overall isotropy could be induced. There-
fore, the AA path of the TMC model can be regarded as an adaptation of the herring-
bone idea for conditional Markov chain simulation.

Although the directional effect problem was overcome in the Markov chain con-
ditional simulation approach, the small-class underestimation problem cannot be ef-
fectively solved within the framework of the CMC theory. The problem is found to
be related with the fundamental assumption of the CMC theory—the full indepen-
dence of the two 1-D Markov chains in a CMC, which causes unwanted transitions
(i.e., transitions of the two 1-D Markov chains to the same location with unequal
states). This problem is strong when sample data are relatively sparse, as shown and
discussed in Li et al. (2004) and Li and Zhang (2005). Because sparsity of samples
is the normal case in real world applications, this problem largely impacts the use-
fulness of the approach. In addition, the use of multiple chains is also inconvenient



Math Geol (2007) 39: 321–335 323

to further expansion of CMC-based models for dealing with random point samples
through a random path.

This paper proposes a single-chain based Markov chain random field (MCRF) ap-
proach for building one to multi-D Markov chain models for conditional simulation
or interpolation. A general solution for the CPD of a random variable in a MCRF is
derived explicitly based on the Bayes’ theorem and the conditional independence as-
sumption. Multi-D Markov chain models built on the MCRF theory will not have the
small-class underestimation problem. With transiograms serving as spatial measures,
multi-D MCRF models may work with any kinds of sample data in conditional simu-
lations. Thus, the MCRF and the transiogram will constitute the theoretical backbone
of nonlinear Markov chain geostatistics.

It is important to note that the objective of this paper is to define the theoretical
basis of the MCRF, not to provide practical implementation techniques. Specific algo-
rithms and implementations of MCRF-based Markov chain models will be provided
in future papers or depend on future development of new algorithms.

Small-Class Underestimation

Both the CMC model and the TMC model used couplings of multiple 1-D Markov
chains. That means they are multiple-chain models. The occurrence of the small-class
underestimation problem is exactly related to the use of multiple chains. In the CMC
theory of Elfeki and Dekking (2001), two 1-D Markov chains were coupled together
to conduct a 2-D simulation. To couple two 1-D Markov chains, a full independence
assumption of two chains in axial directions was employed and these two chains were
forced to move to the same location with equal states (Elfeki and Dekking 2001,
p. 573). Thus, on a lattice, they had

Pr(Zi,j = k | Zi−1,j = l,Zi,j−1 = m)

= C · Pr(Xi = k | Xi−1 = l)Pr(Yj = k | Yj−1 = m)
(1)

where Xi and Yj were two 1-D Markov chains in two axial directions and Zi,j was
the coupled 2-D Markov chain, all defined in a state space {1, 2, . . . , n} including k,
l, and m. In (1), C was a normalizing constant and its necessity was attributed to the
exclusion of unwanted transitions (Elfeki and Dekking 2001, p. 575, for exclusion of
unwanted transitions).

By normalizing the right-hand side of (1), the CPD of the CMC was obtained as

plm,k = Pr(Zi,j = k | Zi−1,j = l,Zi,j−1 = m) = plk · pmk
∑n

f =1(plf · pmf )
k = 1, . . . , n

(2)

where plk represented a transition probability from state l to state k (Elfeki and
Dekking 2001, p. 574).

It has been found that the exclusion of unwanted transitions in (2) causes plm,k to
have lower values when k is a small class or higher values when k is a large class. For
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example, if we have two 1-D Markov chains of two classes with the following same
transition probability matrix

[
Class 1 2

1 0.1 0.9
2 0.1 0.9

]

(3)

given l and m (i.e., they are known), occurrence probabilities of class 1 and class 2
should be 0.1 and 0.9, respectively. However, using (2) we always get the occurrence
probability of class 1 (i.e., when k = 1)—the small class—at about 0.012 and that of
class 2 (i.e., when k = 2)—the large class—at about 0.988. Thus, the small class will
be underrepresented in simulated realizations (correspondingly, the large class will
be overestimated).

In a conditional simulation, the small-class underestimation problem is weakened
by conditioning data and may not reach the extent shown in the above example. How-
ever, the small-class underestimation problem becomes severe with decreasing den-
sity of conditioning data (Li et al. 2004).

Conditional Independence Assumption

The conditional independence assumption used in this study assumes that given a
location x its nearest known neighbors in different directions x1, . . . , xm are condi-
tionally independent. This assumption can be generally expressed as

Pr(xi | x, x1, . . . , xm) = Pr(xi | x) (4)

Thus, only pairwise interactions between the unknown location to be estimated and
surrounding known data are considered, but the two points of each pair may be re-
motely located and their interaction is directional through a transition probability with
a distance lag (Fig. 1).

The conditional independence assumption has been used widely in many fields
such as in Bayesian network (also called Naïve Bayes because this assumption is
mathematically difficult to prove) (e.g., Friedman et al. 1997; Ramoni and Sebastiani
2001) and more recently in indicator geostatistics. As suggested by Journel (2002),
the assumption of conditional independence is a way around the problem of knowing
joint probabilities of multi-points (Ortiz and Deutsch 2004).

Thus far there is no Markov random field (MRF) theory to support the assump-
tion that pixels in any directions (including cardinal directions and non-cardinal di-
rections) are conditionally independent. But in practical uses, it seems nothing can
block the applications of this general assumption because of its practicality in sim-
plifying complex issues and in generating acceptable (or even satisfactory) results
under some conditions. If the neighborhood is symmetric, we can find a successful
application example from Besag (1986) for image processing, where eight adjacent
neighbors of x were all assumed conditionally independent. Ripley (1990) suggested
that in a pairwise interaction process site interactions between a point and its distant
nearest neighbors (in any directions) might be treated independently.
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Fig. 1 Illustration of a Markov chain random field. A spatial Markov chain jumps in a multi-dimensional
space. The white cell refers to the current location with an unknown state, and surrounding black cells
represent its nearest known neighbors in different directions in the simulation domain (or in a search
radius). Arrows represent directional interactions. The solid arrows also represent the moving directions
of the spatial Markov chain. After the spatial Markov chain moves to next location, the current location
becomes known

As Journel (2002) suggested, the conditional independence assumption should
not be taken lightly and should be checked whenever possible. We found the condi-
tional independence assumption to be theoretically correct in a Pickard random field
(Pickard 1980) for sparse samples, only if the nearest known neighbors in cardinal
directions are considered (see Appendix). With a conservative attitude, it is suggested
herein that if the nearest known neighbors are generally located uniformly throughout
the study space and a random path is used in a simulation, inclusion of nearest known
neighbors in non-cardinal directions may be considered. But if a fixed path such as
the AA path is used, including nearest known neighbors in non-cardinal directions
may not be suitable because of the strong asymmetry of structures of nearest known
neighbors.

Markov Chain Random Fields

Definition

To avoid the small-class underestimation problem, the suggested MCRF contains
only one single Markov chain. Thus, the full independence assumption of multiple
chains and exclusion of unwanted transitions will not be needed in the MCRF theory.

A MCRF should be a special MRF because it obeys the transition probability law.
The difference is that the former is built on a “directional chain” and the latter does
not contain chains. In a MCRF, it is assumed that there is only one single Markov
chain in a space which has its CPD at any location entirely dependent on its nearest
“known” neighbors in different directions. The distances from such nearest known
neighbors to the current location to be estimated may be various. The Markov chain
may move or jump within the (any-D) space randomly or along prescribed paths. For
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convenience, the Markov chain in a specific MCRF is called a spatial Markov chain
(SMC).

A MCRF is generally defined to be a field of a single SMC that moves or jumps in a
space, obeying the same or different transition probability rules in different directions
and having its states at any unknown location entirely depending on its nearest known
neighbors found in different directions. These nearest known neighbors around x

form an unfixed neighborhood system. The same labels are used below to represent
both locations and states of a random variable at the locations. Assume X is a random
variable that obeys the rules of a SMC defined on a state space S = (1, . . . , n), then
according to the above definition of the MCRF, its CPD at any location x is given as

Pr(x | (n)) = Pr(x | x1, . . . , xm) m ≥ 1 (5)

where x represents current location; n represents the n known locations in the whole
space; and m indicates the number of nearest known neighbors possibly found in all
directions considered in the space.

In (5), m is always greater than or equal to one, because the SMC at least may have
its last stay location (already become known) serve as its nearest known neighbor. If
the SMC leaps across a known location, the location crossed will replace the last
stay location to be the nearest known neighbor in that direction. Figure 1 illustrates a
SMC, which jumps from one location to another location in a space (i.e., in a MCRF)
and its state at each location depends on its nearest known neighbors, e.g., x1 to x7,
that could be found in different directions.

General Solution

Using the Bayes’ theorem (or the definition of conditional probability), we can de-
compose the right side of (5) as follows

Pr(x | x1, . . . , xm)

= Pr(xm, . . . , x2, x1, x)

Pr(x1, . . . , xm)

= Pr(xm | x, xm−1, . . . , x1) · · ·Pr(x2 | x, x1) · Pr(x1, x)

Pr(x1, . . . , xm)

= Pr(xm | x, xm−1, . . . , x1) · · ·Pr(x2 | x, x1) · Pr(x | x1) · Pr(x1)

Pr(x1, . . . , xm)

= C · Pr(xm | x, xm−1, . . . , x1) · · ·Pr(x2 | x, x1) · Pr(x | x1) (6)

where C is given as

C = Pr(x1)

Pr(x1, . . . , xm)
(7)

C is a constant because it doesn’t involve the unknown location x.
Please note that here, the joint probability Pr(x1, x) is decomposed into Pr(x |

x1) · Pr(x1), not Pr(x1 | x) · Pr(x) so that Pr(x) will not occur in C. This factorization
still obeys the Bayes’ theorem.
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Applying the conditional independence assumption of (4), the following equations
hold

Pr(xm | x, xm−1, . . . , x1) = Pr(xm | x) (8)

...

Pr(x2 | x, x1) = Pr(x2 | x) (9)

Thus, (6) can be simplified to

Pr(x | x1, . . . , xm) = C · Pr(xm | x) · · ·Pr(x2 | x) · Pr(x | x1) (10)

If we use transition probabilities with distance lags to replace two-point condi-
tional probabilities in (10), it is

Pr(X(x) = k | X(x1) = l1, . . . ,X(xm) = lm) = C · pm
klm

(hm) · · ·p2
kl2

(h2) · p1
l1k

(h1)

(11)
where pi

kli
(hi) represents a transition probability in the ith direction from state k to

state li with a lag hi ; x1 represents the nearest known neighbor from or across which
the SMC moves to current location x; m represents the number of nearest known
neighbors; k, li , and f all represent states in the state space S = (1, . . . , n); hi is
the distance from current location to the nearest known neighbor xi . With increasing
lag h, any pkl(h) forms a transition probability diagram, here simply called “tran-
siogram” and suggested as an accompanying spatial measure of MCRF.

Renormalizing the right hand side of (11) to cancel the constant C, it is

Pr(X(x) = k | X(x1) = l1, . . . ,X(xm) = lm) =
∏m

i=2 pi
kli

(hi) · p1
l1k

(h1)
∑n

f =1[
∏m

i=2 pi
f li

(hi) · p1
l1f

(h1)]
(12)

Equation (12) gives the general expression of the CPD of the SMC X at any un-
known location in a MCRF. The exact form of (12) at a specific location depends on
the number of nearest known neighbors found in different directions, distances from
these nearest known neighbors to the location to be estimated, and directions along
which these nearest known neighbors are located. Using (12), we can calculate the
CPD values of X at any unobserved location.

Note that in deriving (12), there is no independence assumption of multiple chains
and also no unwanted transitions involved because there is only one single Markov
chain in a MCRF. Therefore, the MCRF theory is thoroughly different from the CMC
theory.

MCRF-Based SMC Models

As previously mentioned, the conditional independence assumption may not be ap-
plicable anywhere. Similar to MRFs which were systematically presented several
decades ago (Besag 1974), the general solution of (12) for MCRF may also not prac-
tically work for any neighborhood situation. To effectively utilize the MCRF theory
in practice, development of practical simulation algorithms is the key.
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However, from (12), specific simple SMC models may be drawn and these sim-
ple SMC models may be useful in prediction and simulation of categorical variables
because they do not underestimate small classes. Because the conditional indepen-
dence assumption is correct regarding cardinal directions, specific SMC models that
consider nearest known neighbors only in cardinal directions are theoretically sound
Markov chain models (i.e., not Naïve models. Note that Naïve models may still be
practical in some situations). Some of such SMC models in 1-D to 3-D spaces are
provided as follows.

In a 1-D space

1. If m = 1, that is, if there is only one nearest known neighbor, and h1 = 1 (step
length), (12) is reduced to

Pr(X(x) = k | X(x1) = l) = plk
∑n

f =1 plf

= plk (13)

thus, the SMC goes back to the most basic Markov chain—a 1-D unidirectional
continuous Markov chain.

2. If m is 2, that is, if an unknown location has two known neighbors, one at each
side, we have a 1-D SMC model for conditional simulations drawn from the gen-
eral solution as

Pr(X(x) = k | X(x1) = l,X(x2) = q) = p1
lk(h1) · p2

kq(h2)
∑n

f =1[p1
lf (h1) · p2

f q(h2)]
(14)

Equation (14) has been used in Li and Zhang (2005) for simulating outer bound-
aries of a study area. Note that if the SMC moves forward continuously (i.e.,
h1 = 1), the 1-D SMC model can be further simplified as

Pr(X(x) = k | X(x1) = l,X(x2) = q) = plk · pkq(h)
∑n

f =1[plf · pf q(h)] (15)

where h stands for the distance from current unknown location to a known neigh-
bor ahead. Equation (14) is a generalized 1-D Markov chain model for conditional
simulation, and (15) is a special case of (14). Equation (15) is identical with the
1-D Markov chain model conditioned on a future state on a rectangular lattice
introduced by Elfeki and Dekking (2001, p. 572), which can be rewritten as

Pr(Xi = k | Xi−1 = l,Xi+h = q) = plk · pkq(h)

plq(h + 1)
(16)

in the notation custom of this paper. Equation (15) is a renormalized form of (16).
Equation (16) was also the core idea of the CMC theory for conditional simulation.

In a 2-D space

1. First, considering the neighborhood of the CMC model of (2), that is, considering
that the SMC have two adjacent known neighbors in orthogonal directions (i.e.,
h1 = 1 and h2 = 1), we can get the SMC model from the general solution as

Pr(X(x) = k | X(x1) = l,X(x2) = m) = plk · pkm
∑n

f =1(plf · pf m)
(17)
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This model looks like the CMC model of (2). But carefully checking one can
find that they are different: In (2) we have terms pmk and pmf , but here we have
pkm and pf m. Because of the normal asymmetric property of transition probabil-
ities, given the same transition probability matrix, (17) and (2) generate different
results. In addition, (17) is a single-chain 2-D model. It can be used to conduct
unconditional simulation without the small-class underestimation problem. If we
use the transition probability matrix provided in Expression (3) to (17), we can get
the occurrence probability of class 1 (i.e., when k = 1)—the small class—exactly
at 0.1 and that of class 2 (i.e., when k = 2)—the large class—exactly at 0.9 as
expected.

2. If we consider subsurface characterization with conditioning on borehole logs,
we may use three nearest known neighbors in cardinal directions (left, right, and
top). Thus, the general SMC model for subsurface characterization, drawn from
the general solution, is

Pr(X(x) = k | X(x1) = l,X(x2) = m,X(x3) = q)

= p1
lk(h1) · p2

km(h2) · p3
kq(h3)

∑n
f =1[p1

lf (h1) · p2
f m(h2) · p3

f q(h3)]
(18)

Similarly, this model is different from the CMC model conditioned on borehole
logs given in Elfeki and Dekking (2001, p. 576). Equation (18) will correct the
small-class underestimation problem of the CMC model.

3. If we consider four cardinal directions in the horizontal two dimensions, the gen-
eral SMC model drawn from the general solution can be given as

Pr(X(x) = k | X(x1) = l,X(x2) = m,X(x3) = q,X(x4) = o)

= p1
lk(h1) · p2

km(h2) · p3
kq(h3) · p4

ko(h4)
∑n

f =1[p1
lf (h1) · p2

f m(h2) · p3
f q(h3) · p4

f o(h4)]
(19)

This SMC model is illustrated in Fig. 2. It looks similar to but essentially dif-
fers from the TMC model, which was composed of two further extended CMCs
(Li et al. 2004; Li and Zhang 2005). Equation (19) will correct the small-class
underestimation problem of the TMC model.

In a 3-D space, if only considering cardinal directions, we can get a general 3-D SMC
model from the general solution as

Pr(X(x) = k | X(x1) = l1, . . . ,X(x6) = l6) =
∏6

i=2 pi
kli

(hi) · p1
l1k

(h1)
∑n

f =1[
∏6

i=2 pi
f li

(hi) · p1
l1f

(h1)]
(20)

The 3-D herringbone method presented by Sharp and Turner (1999) may be
adopted as a practical fixed path in a 3-D Markov chain conditional simulation for
subsurface characterization using the above equation.

Above SMC models in (14), (18), (19) and (20) will be useful in 1-D to 3-D
interpolation and conditional simulation of categorical variables.
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Fig. 2 Illustrating a simplified
spatial Markov chain in a
two-dimensional space, which
considers only nearest known
neighbors in cardinal directions.
The current cell (i.e., the white
cell) is conditioned on four
nearest known neighbors (black
cells) at the top, bottom, and two
sides. Black cells represent
known locations. All arrows
(dash and solid) represent data
interactions and transition
probability directions. The solid
arrow also represents the
moving direction of the spatial
Markov chain

Example

The usefulness of the MCRF theory will depend on the development of practical sim-
ulation algorithms. Although multi-D Markov chain models based on the CMC idea
underestimate small classes and have other imperfections (Li et al. 2004), they have
shown their usefulness in conditional simulations of soil types and land cover classes
with relatively dense samples. MCRF-based SMC models can directly replace those
models for the same application purposes using similar simulation algorithms. For
example, we can directly apply the SMC model of (19) (Fig. 2) to the algorithms
developed for the TMC model to acquire better results. However, the MCRF theory
can support many different models and algorithms and it is more flexible than the
CMC theory.

To show the usefulness and also to demonstrate the settlement of the small-class
underestimation problem by the MCRF theory, Fig. 3 shows some simulated real-
izations of seven land cover classes generated by the TMC model and the SMC
model of (19). Details in simulation algorithm and parameter estimation can be
seen in Li and Zhang (2005). The simulation domain is a 295 × 295 grid (i.e.,
a 5.9 × 5.9 km2 area with a pixel size of 20 × 20 m2). These realizations are
conditioned on three different regular point datasets (1849, 441 and 121 regular
points) in simulations. Experimental transiograms were estimated from the most
dense sample dataset and interpolated into continuous models (Li and Zhang 2005).
The reference land cover map was provided to verify simulated results. It can be
seen that small classes such as class 7, class 1 and class 3 are obviously under-
represented or even disappear in realizations generated by the TMC model with de-
creasing density of conditioning data; however, they are always well-represented in
realizations generated by the SMC model, irrespective of the density of condition-
ing data.
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Fig. 3 Simulated realizations of
a land cover map with seven
land cover classes. A, the
original map. B, D and F,
realizations from the SMC
model (i.e., (19) in the text),
conditioned on 1849, 441 and
121 regular points, respectively.
C, E and G, realizations from
the TMC model, conditioned on
1849, 441 and 121 regular
points, respectively. The SMC
model apparently overcomes the
small-class underestimation
problem (see class 7, class 1 and
class 3)

Conclusions and Discussion

A single-chain based MCRF theory for Markov chain estimation of categorical vari-
ables in one to multiple dimensions is presented in this paper. A MCRF is a special
MRF for dealing with high-order interactions of sparse data. It consists of a single
SMC that can move in the whole space. The general solution of the CPD of a random
variable at an unknown location in a space of any dimensions is derived explicitly
based on the conditional independence assumption and the Bayes’ theorem. The gen-
eral solution only involves 1-D two-point transition probabilities with different lags,
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which can be obtained from transiograms. Thus, the MCRF theory apparently sim-
plifies complex problems, facilitates efficient conditional simulation, and meets our
needs in dealing with multinomial classes such as soil types. Based on the general
solution, different simplified SMC models may be built for different situations and
purposes such as simulation and prediction of subsurface formations or surface cate-
gorical geographical variables.

Multi-D SMC models overcome the small-class underestimation problem of
multi-D Markov chain models based on the CMC theory and are more flexible for
algorithm design. Thus, the MCRF theory actually expands Markov chains into a
nonlinear Markov chain geostatistics. Simulation algorithms developed for the TMC
model can be directly applied to the SMC models that consider only nearest known
neighbors in cardinal directions. Development of practical simulation algorithms will
be the key for making full use of the MCRF theory.

One issue that should be noted is simulation paths. It is conventionally thought that
unilateral processes are difficult to use in practice in multi-dimensions (Martin 1996,
1997) because they cause directional trends in simulated patterns (Gray et al. 1994).
That is also why the CMC model (Elfeki and Dekking 2001), as a 2-D unilateral
Markov process, generates inclined patterns when conditioning data are sparse or per-
forming unconditional simulations. The herringbone method (Turner and Sharp 1994;
Sharp and Turner 1999) solved this problem in simulation of multi-D unilateral au-
toregressive processes. Similar idea was used in Li et al. (2004) in 2-D Markov chain
conditional simulation. As a fixed path, this method should be widely applicable to
multi-D unilateral processes including multi-D MCRF-based SMC models. However,
to deal effectively with irregularly distributed point samples in conditional simula-
tion, a random path will be more appreciated. The general solution of MCRF provides
the flexibility and potential for designing random-path simulation algorithms.

The second issue that should be noted is the conditional independence assump-
tion. This study only indicates that it is theoretically correct to assume conditional
independence of nearest known neighbors in cardinal directions. Although the con-
ditional independence assumption has been widely used in recent years in different
fields and it is usually applicable, it is not proved (or unprovable) that this assumption
can be theoretically correct for nearest (known) neighbors in non-cardinal directions.
Thus, the general solution of MCRFs is derived actually based on an assumption that
is not fully proved. It should be noted, therefore, that when nearest known neighbors
in non-cardinal directions are considered in a simulation, the general solution may
not work well for some situations, e.g., asymmetric neighborhoods with fixed paths.

In addition, note that the so-called cardinal directions are not limited to the exact
four axial directions. For example, a triangle lattice has only three cardinal directions
(Pickard 1980). A suitable tolerance angle for cardinal directions should be feasible
for dealing with irregular point samples with a random path, and in a non-lattice space
it may be feasible to consider more than four cardinal directions.
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Appendix: Conditional Independence of Nearest Known Neighbors in Cardinal
Directions

If only considering cardinal directions, the conditional independence assumption ac-
tually holds in a Pickard random field (PRF). Pickard (1980) proved the existence
of a curious unilateral Markov random field, which has a special property that for a

generic clique
(

A B
C D

)
, given any pixel D among A, B , C and D within the clique its

two diagonally adjacent pixels B and C are conditionally independent. So in a PRF,
we have

Pr(B | D,C) = Pr(B | D) (21)

Based on this property, Pickard presented his model, which is still complex and in-
volves three-pixel cliques, for binary processes.

Elfeki and Dekking (2001) adopted a full independence assumption of two 1-D
Markov chains to construct their model. The CMC model (Elfeki and Dekking 2001,
p. 573) can be simply written as

Pr(D | B,C) = Pr(D | B) · Pr(D | C) (22)

which requires the two conditional probabilities Pr(D | B) and Pr(D | C) (i.e., two
1-D Markov chains) be fully independent of each other. The consequence of such an
assumption has been explained in the text of this paper.

The PRF was further adapted by others (e.g., Haslett 1985; Idier et al. 2001;
Fjortoft et al. 2003) for image processing, where they assume that given a pixel x

all its four adjacent pixels y1, y2, y3 and y4 (i.e., upper, left, right, and underlying
adjacent pixels) in a neighborhood like

⎛

⎝
y1

y2 x y3
y4

⎞

⎠ (23)

are conditionally independent. This adaptation is straightforward and it still makes
a PRF. To explain this, let’s first check the pixel y1. In a PRF, given x, we have y1

and y2 are conditionally independent, and we also have y1 and y3 are conditionally
independent according to (21). Looking at the direction from y4 to y1, we can find y4

is a past state of y1 beyond x. So given x, y1 is independent of y4. Finally, we have

Pr(y1 | x, y2, y3, y4) = Pr(y1 | x) (24)

and other simpler expressions for conditional independence in a PRF.
The Pickard’s theorem is usually used for interactions of adjacent pixels or pixel

blocks in image processing. Note that pixels in the generic clique
(

A B
C D

)
need not be

single pixels; they can be pixel blocks, as used in Derin et al. (1984) and Rosholm
(1997). Here we want to apply the conditional independence to sparse data for high-
order (or remote) interactions.
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Assume we have a general sparse-data structure in a PRF as

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1
...

x2 · · · x · · · x3
...

x4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(25)

where x1, x2, x3 and x4 are four nearest known neighbors of x along cardinal direc-
tions on a regular lattice. They may be distant from the pixel x with distances h1,
h2, h3 and h4, respectively. Given the pixel x, they can still be regarded as being
conditionally independent.

To prove this, let’s use E, F , G and H to represent pixel blocks of
( x1

...

)
, (x2 · · ·),

(· · ·x3) and
( ...

x4

)
, respectively, we immediately have that given x the four pixel

blocks of E,F,G and H in a PRF are conditionally independent, that is, for any
pixel block of E we have

Pr(E | x,F,G,H) = Pr(E | x) (26)

Since only one pixel is known in each of these pixel blocks, from (26) we further
have

Pr(x1 | x, x2, x3, x4) = Pr(x1 | x) (27)

Thus, it can be seen that sparse data with high-order interactions along cardinal di-
rections can be conditionally independent in a PRF; that is, within a PRF, (27) holds.
Both (24) and (27) can be directly extended to three dimensions.

Further relaxing (27) to include data in non-cardinal directions is practically fea-
sible in some situations. So we may generally write the conditional independence
assumption in a multi-D space as

Pr(xi | x, x1, . . . , xn) = Pr(xi | x) (28)

Compared to the “forced” independence of two chains in the CMC theory, this con-
ditional independent assumption of nearest known neighbors is reasonable.
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