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Abstract.  Characterization of shallow subsurface sedimentary architecture, such as alluvial soil 

layers, is essential in hydrogeology. Elfeki and Dekking (2001) presented a highly efficient 

coupled Markov chain model for subsurface characterization with conditioning on well logs. The 

model is capable of reproducing some major subsurface features at their approximate locations. 

However, the model shows some obvious limitations, such as layer inclination and under-

estimation of minor states, when applied to simulating the structures of alluvial soil textural 

layers with sparse borehole data. This study presents an idea to mitigate these deficiencies by 

conditioning two-dimensional simulations of vertical transects on simulated lines generated by 

one-dimensional Markov chain methods. This method is proven to be effective with some 

tradeoffs by rigorous testing using different borehole schemes and comparison with simulated 

realizations from the coupled Markov chain model. Since datasets of densely distributed 

boreholes are often not available in most real-world applications, the method may enlarge the 

application scope of the coupled Markov chain methodology in shallow subsurface 

characterization with sparse borehole data.   
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1. Introduction 
Characterization of sediment layer heterogeneity in shallow subsurface is essential in 

hydrogeology, pedology, and sedimentology. The information obtained about shallow subsurface 

formations such as alluvial soil layers in flooding plains, often comes from borehole records 

(Weissmann et al., 1999; Li et al., 1997). Boreholes provide sufficient knowledge about the 

vertical variation of the depositional sequences (e.g., sediment textural layers). Borehole data are 

available in many soil surveys (usually within a 2m depth). But little information is available 

about the lateral extension of shallow subsurface features due to the difficulty of obtaining this 

information. Soil scientists mainly rely on the use of soft data (expert knowledge, common 

sedimentary principles, field profile observation, etc.) as a source of information about the lateral 

variability of alluvial soil layering. However, the density of boreholes (because of its high cost) 

is often too low for scientists or surveyors to correctly interpolate the lateral extensions of soil 

layers. The lateral extension of soil textural layers has strong influence on water and solute 

transport in the vadose zone (Koltermann and Gorelick, 1996; Feyen et al., 1998; Li et al., 2001). 

It is necessary to develop effective methods capable of characterizing the spatial heterogeneity of 

shallow subsurface formations in two- to three-dimensions with limited borehole data. 
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1.1 A Simple Review of Related Methods  

Imitation of spatial heterogeneity of shallow subsurface categorical variables such as 

sediment textural layers in multi-dimensions is difficult using conventional methods when 

available survey data is very limited (Koltermann and Gorelick, 1996). For example, indicator-

based geostatistical methods (Deutsch and Journel, 1997), which are well-developed and 

popularly used, do not consider sedimentary probability rules and have difficulty to deal with the 

abrupt boundaries (McBratney et al., 2000) between layers, therefore, it is difficult for them to 

honor the transitions between different facies (Murray, 1994). Parameter estimation (e.g., 

variograms in the lateral direction) is also difficult when borehole data are few (Bierkens and 

Weerts, 1994; Weissmann and Fogg, 1999). Computation time and parameter preparation 

workloads are high when many nominal classes are involved and cross-variograms and 

anisotropies are considered (Ehlschlaeger, 2000; Zhang and Goodchild, 2002). Some recently 

developed methods can be seen in Carle and Fogg (1996), Weissmann and Fogg (1999), 

Ehlschlaeger (2000), Bogaert (2002), and Chen and Rubin (2003), which all attempt to avoid or 

deal with the constraints of indicator geostatistics with different extents of success.  

The Markov chain theory represents another approach for heterogeneity characterization. The 

unique merits of Markov chains are that (1) each single Markov chain can describe a spatially 

interdependent sequence rule of different states (i.e., classes) in one direction, (2) both auto-

correlation and cross-correlation of different states are included in a Markov transition 

probability matrix, (3) many classes can be dealt with simultaneously, and (4) Markov transition 

probabilities are relatively more intuitive than indicator variograms; therefore soft information, 

even expert knowledge, such as facies length, proportions, and juxtaposition relationships, is 

relatively easier to be incorporated into estimation of Markov transition probability matrices 

(Rosen and Gustafson, 1996; Weissmann and Fogg, 1999). Although one-dimensional Markov-

chain methods have been used widely in different fields such as geology, soil science and 

ecology (Harbaugh and Bonham-Carter, 1980; Burgess and Webster, 1984a, b; Li et al., 1999; 

Balzter, 2000), using Markov chains for multi-dimensional simulation, especially for conditional 

simulation and prediction (i.e., interpolation), is relatively difficult and usually with obvious 

constraints. A typical earlier work, for example, can be seen in Lin and Harbaugh (1884), who 

first realized the unconditional multi-dimensional Markov chain simulation of geological 

formations based on the Swizter’s (1965) theorem. In recent years, the Markov random field 

(MRF) approach (Besag, 1974, 1986; Descombes et al., 1999; Wu et al., 2004) and the 

hierarchical Markov chain transition probability matrix approach (Johnson et al., 1999; Patil and 

Taillie, 2001) have found their uses in image processing and landscape ecology. However, these 

two approaches normally need exhaustive data (i.e., the original image) for simulation; thus, they 

actually don’t provide a tool for spatial prediction from sparse measured data. Multi-dimensional 

Markov chain methods for conditional simulation and prediction from measured data emerged 

only recently in geosciences as a tool for characterizing lithofacies (Elfeki and Dekking, 2001; 

Norberg et al., 2002). Conditional simulation is obviously more interesting and useful because 

spatial patterns can be imitated to approximate locations with the conditioning of measured data 

and their spatial uncertainty may be analyzed using occurrence probabilities calculated from 

multiple realizations (Zhang and Goodchild, 2002).  

The main difficulties for using explicit multi-dimensional Markov chains for conditional 

simulations include: (1) conditioning on multiple boundaries (or measured data) and (2) choosing 

a suitable simulation ordering in a past-present-future sequence (Koltermann and Gorelick, 1996). 

Recently, Norberg et al. (2002) further extended the computationally simple Bayesian Markov 
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random field methodology of Rosen and Gustafson (1996) to simulate lithofacies from sparse 

data. Although Markov random field methods avoid the aforementioned difficulties, their 

implementation employs a heavily iterative scheme to obtain the final spatial configuration. The 

iterative algorithm is slow to converge or even may fail and thus results in extremely high 

demand in computation. For example, for an area of about 100×100 pixels (i.e., grid cells), the 

method of Norberg et al. (2002) needs 1.5 to 2.5 days of run time on a SUN workstation for 

producing a realization. Other deficiencies include the severe under-estimation of minor states 

and that the model cannot produce realistic maps by unconditional simulation, as mentioned by 

the authors (Norberg et al., 2002). Additionally, the standard implementation of Markov random 

fields also cannot reproduce anisotropic structures (Tjelmeland and Besag, 1998). These 

constraints make it currently not well-suited for simulating categorical variables from sparse data 

over large areas and for uncertainty analyses, which normally needs many realizations to be 

generated.  

 

1.2 Review of the Coupled Markov Chain Model 

The coupled Markov chain (CMC) model of Elfeki and Dekking (2001) for subsurface 

lithofacies characterization uses an explicit non-iterative algorithm (i.e., one pass one realization), 

which makes it highly efficient. Theoretically, the model also represents another way to realize 

multi-dimensional simulation using Markov chains. More significantly, it presents a solution for 

approximately conditioning on borehole data. The study cases of Elfeki and Dekking (2001) 

demonstrated that the CMC model could capture the major features (with long extensions) of 

subsurface geological formations at their approximate locations when a number of well data 

were conditioned. This may be an obvious advantage of the model for subsurface imitating 

(Elfeki and Dekking, 2001, p.586). While the model has some significant merits, obvious 

deficiencies can be found from simulations using the model, which include (a) layer inclination 

tendency along the simulation direction, (b) layer discontinuity along boreholes, and (c) 

underestimation of minor states. The model can generate very imitative realizations when 

boreholes are densely distributed (otherwise realizations are quite unrealistic) or layers are 

naturally tilted along the simulation direction and different states account for a similar proportion 

(i.e., no minor or major states). 

To explain the deficiencies (a) and (b), please note the model employs a fixed asymmetric 

path (i.e., simulation ordering). Thus, it has to first decide a simulation sequence from the top-

left corner to the bottom-right corner or from the top-right corner to the bottom-left corner row 

by row for conducting a simulation. This asymmetry is further emphasized by the asymmetric 

conditioning neighborhood (i.e., the immediate top cell and one immediate side cell). A random 

path that is used in some other random field models to avoid simulation artifacts (Kyriakidis and 

Dungan, 2001) is not feasible for this model because the generation of the current cell depends 

on its immediate preceding neighboring cell and its upper cell. Our simulation of alluvial soil 

transects using this model shows that this ordering problem results in some simulation artifacts – 

layer inclination along the simulation ordering and layer discontinuity (will be shown in our 

simulation cases in this paper, also can be seen in Li (1999). Layer discontinuity also can be seen 

in the simulation cases of Elfeki and Dekking (2001)). Conditioning on future states (i.e, internal 

boreholes) will mitigate these artifacts. However, the influence of future states on the coupled 

Markov chain is usually short-distanced, particularly if layers of the states are not very thin and 

long (i.e., strongly auto-correlated) along the lateral direction; therefore, unless the boreholes is 

densely distributed or layers are naturally tilted along the simulation direction, these artifacts 
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cannot be effectively eliminated. Very thin layers (by carefully choosing cell sizes) may not 

show clear inclination tendency, but layer discontinuity along borehole lines will be stronger. 

These artifacts mitigate with the increase of the density of boreholes - the conditioning data.  

Underestimation of minor states (consequently overestimation of major states) occurs when 

different states account for different proportions. Some minor states may be missing when 

conditioning data are too sparse. This point is also mentioned by the authors of the CMC model 

in another way as “the geological features with short extensions are not very well reproduced” 

(Elfeki and Dekking, 2001, p.586) and “it is also important to point out that the lithology coded 5 

(black) does not appear in any of the wells and so it is reproduced neither in the single realization 

or in the ensemble average” (Elfeki and Dekking, 2001, p.588) although it is represented in 

parameters. Underestimation of minor states also occurs in the Markov random field method of 

Norberg et al. (2002). Norberg et al. (2002) thought that their method might have the tendency of 

over-estimating spatial dependencies of classes because of the possible existence of phase 

transitions (Guyon, 1995). This explanation may also apply to the CMC model. The second 

reason is related with the independency assumption of the two one-dimensional Markov chains, 

because this assumption for the CMC model to be implemented is also an assumption that cannot 

be justified. Our observation from our simulations shows that this problem also gradually 

mitigates with the increase of the density of boreholes - the conditioning data in the CMC 

modeling. This observation is similar as those mentioned by the CMC model developers, which 

said that “it is clear that by increasing the number of wells, the simulation results improve and 

become closer to the original image (‘real’ formation)” (Elfeki and Dekking, 2001, p.579). 

Therefore, when boreholes are sparse, the CMC model is not sufficient to generate realistic 

realizations. Please note, the sparsity is relative to the lengths of layers in the lateral direction. 

The longer are the lengths of layers, the fewer boreholes are needed to generate realistic 

realizations. Please also note, whether or not the aforementioned problems are model 

deficiencies also depend on whether or not these problems are users’ concerns.  

In general, the CMC model has its obvious advantages in both theory and applications. 

However, to make such an efficient approach to be applicable for other simulation purposes, 

such as alluvial soil layers for hydrological modeling, with sparse boreholes, it is necessary to 

further mitigate the aforementioned deficiencies.   

 

1.3 Objectives 

Data sparsity is the normal case in real world applications. It is also desirable to have the 

subsurface features more reasonably represented with approximate areal proportions and shapes 

in conditional multidimensional Markov chain simulation if measured data are not sufficient to 

reproduce them at their accurate locations. In the study we develop an idea - “conditioning on 

simulated lines” generated by one-dimensional Markov chains to simulate alluvial soil textural 

layers. This idea is based on two points of observations: (1) increasing conditioning data will 

obviously mitigate the deficiencies of the CMC model and (2) one-dimensional Markov chains 

do not underestimate minor states. The purpose of using simulated lines is to increase the density 

of conditioning data for two-dimensional simulation, thus to mitigate the deficiencies of the 

CMC model. Such an idea provides a simple and intuitive solution for mitigating the deficiencies 

of the CMC model with tradeoffs. It may enlarge the application scope of the CMC theory for 

different study purposes with sparse borehole data. The theoretical foundation of this method is 

still the CMC theory of Elfeki and Dekking (2001). This paper will concentrate on graphically 
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testing the application of this idea and related conditions and constraints by simulating an 

alluvial soil transect with different borehole schemes.  

 

2.    Methods 
 

To realize this idea, we need one-dimensional Markov chain methods to first generate a 

number of simulated lines and then use the CMC model to fill the left unknown cells. Therefore, 

such an idea is actually a mixture of one-dimensional Markov chains and the CMC that needs to 

be further extended.  

 

2.1 One-dimensional Markov Chains for Generating Simulated Lines  

Assuming NiiX 0)(  is a discrete, stationary, and first-order one-dimensional Markov chain 

defined on the state space [S1, S2, ..., Sn], we can express this one-dimensional Markov chain as  

lklikirliki pSXSXpSXSXSXp   )|(),...,|( 101                           (1) 

where 
lkp  is the one-step transition probability from state Sl to state Sk, which means that the 

occurrence of state Sk in cell i only depends on the state Sl in the previous cell i-1 but does not 

depend on states in cells further removed. The one-step transition probability matrix (TPM) 

contains all one-step transition probabilities between different states, which together describe a 

Markov chain. A one-step TPM is expressed by  
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where n is the number of states. Equation (1) will be used to simulate vertical lines, i.e., false 

boreholes. 

But if a future state at XN is known as Sq, its influence can be accounted for by “conditioning” 

the Markov chain on that state through multi-step transition probabilities. A one-dimensional 

Markov chain conditioned on a future state (Elfeki and Dekking, 2001) can be given by  
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where )( iN

kqp   is a (N-i)-step transition probability, )1( iN

lqp  is a (N-i+1)-step transition 

probability, and 
qlkp |

 is the probability of cell i to be in state Sk, given that the previous cell i-1 is 

in state Sl and the future cell N is in state Sq. Please note that an m-step TPM can be calculated by 

imposing a power of m to the one-step TPM, i.e.,   

 
m

mm PPPPP  ...)(

                                                                 (4) 

The influence of the future state on the Markov chain is normally short-distanced because of the 

stationary property of a Markov chain. That is, a known cell only influences the determination of a 

cell that is close to it by transition probabilities. When the m in Equation (4) is large enough, the m-
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step TPM will reach a status that it has equal transition probability values in each column. These 

transition probabilities are called stationary probabilities, which can be expressed by 
)(

21 lim),...,,( m

m
n PwwwW


                                                     (5) 

Thus, in Equation (3), when cell N is far from cell i the terms )1( iN

lqp and )( iN

kqp  have little 

influence on
qlkp |

because they both will be almost equal to the same stationary probability wq. 

However, when the simulation gets closer to cell N, its state will start to play a role and the 

simulation result will be affected by the state at that cell.  

Equation (3) will be used to generate lateral lines by conditioning on boreholes and simulated 

vertical lines if there are. In addition to one one-step TPM, it needs to know the initial point and 

the end point (as a future state) for conducting such a one-dimensional simulation. 

 

2.2 Coupled Markov chain with Conditioning on Borehole Data 

Here we give a simple introduction of the CMC model. For details see Elfeki and Dekking 

(2001). Considering a vertical one-dimensional Markov chain 
xNiiX 0)( and a horizontal one-

dimensional Markov chain 
yNjjY 0)(  are coupled to form a two-dimensional Markov chain (Zi,,j) 

on a lattice (Fig. 1), and only considering state transition from state Sl at Zi-1, j and state Sm at Zi, j-1 

to the same state Sk at  Zi,j, if the two one-dimensional chains are assumed to be independent of each 

other, the joint transition probability can be given as 
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where C is a normalizing constant, which arises because we only consider the transitions from Sl 

and Sm to the same state Sk. The superscripts h and v in the above equation represents the 

directions of Markov chains, i.e., horizontal and vertical, respectively. The subscripts l, k, m and 

f all represent states in the state space. The above Equation (6) actually represents the 

unconditional (on future states) coupled Markov chain model developed by Elfeki (1996). Because 

no influence of future states is considered in this model, unless all states have similar areal 

proportions minor states may be strongly underestimated or even missing in simulated results and 

layers are also strongly inclined if they are not very thin (Li, 1999) or strongly discontinuous if they 

are thin (Elfeki and Dekking, 2001, p. 586) when boreholes are sparse.  

Suppose the horizontal chain is conditioned to the known future state Sq at 
jNx

Z ,
on the right 

boundary of a window (see Fig. 1), by applying Equation (3) to Equation (6), the expression of the 

conditional joint transition probability in the coupled chain can be given by   
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where the symbols have same meanings as they have in Equation (3) and (6). The above equation (7) 

represents the CMC model developed by Elfeki and Dekking (2001) for simulations of geological 

cross-sections. The added feature of “conditioning on borehole data” is the core function for 
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conducting conditional simulations and mitigating the simulation artefacts. This conditioning was 

done in an approximate but computationally cheap way as the one in one-dimension shown in 

Equation (3). Elfeki and Dekking (2001) also mentioned another possible conditioning way, i.e., 

conditioning a current state to a future (known) state and the past states in the previous row together. 

However, this more exact and also more complex conditioning way was not integrated into the 

CMC model. The reason may be that it is difficult to implement and also too time-consuming in 

computation.  

 

 
Figure 1. A coupled Markov chain with conditioning to boreholes and simulated lines. Dark 

gray color represents known data (top boundary and boreholes). Light gray represents simulated 

lines using the one-dimensional Markov chain methods and already filled cells by the coupled 

Markov chain.    

 

2.3 Conditioning the Coupled Markov Chain to Lateral Line Data 

Normally, the lateral information for subsurface is difficult to acquire; therefore assuming 

measured data in the lateral direction for conditioning is not suitable. With the idea of 

‘conditioning on simulated lines’, it becomes realistic to extend the above CMC model to 

condition on future states on lateral lines. Assuming that So is the known state at cell 
yNiZ , on the 

bottom boundary of a simulation window and applying Equation (3) to Equation (7) to replace 

the transition probability in the vertical direction, we have the conditional joint transition 

probability of the coupled chain as  
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This extension is very straightforward and is still based on the CMC theory, but it will make the 

CMC model not an exact example of unilateral Markov field any more (Galbraith and Walley, 

1976; Pickard, 1980). 

The above equation (8) will be used in our proposed method. The condition for the model is 

that we must have lateral lines whose states are already known before performing two-

dimensional simulation using the above equation to fill the windows.  

 

2.4 The Proposed Method  
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The proposed method is composed of the one-dimensional Markov chains in Equation (1) 

and (3) and the extended CMC in Equation (8). For the convenience to present it, we denote this 

method as mCMC (modified coupled Markov chain model). Inserting simulated lines, 

particularly simulated vertical lines, is useful only when the measured boreholes are not 

sufficient for the CMC model to generate satisfied realizations, which may depend on different 

application cases and purposes. Therefore, the proposed method is only used for dealing with 

insufficient borehole data. To produce a realization, we will first consider inserting simulated 

vertical lines between boreholes if it is necessary because of the excessive sparseness of 

measured boreholes, and then insert simulated lateral lines by conditioning them on the 

boreholes and simulated vertical lines. These simulated lines together with the hard boreholes 

partition the simulation domain into small “windows”. Finally the extended CMC model in 

Equation (8) performs to fill in windows with conditioning on its known boundaries. If boreholes 

are not excessively sparse (e.g., the borehole interval is not obviously less than the mean-length 

of layers), don’t insert simulated vertical lines. The basic points for inserting simulated lines will 

be further discussed later. 

 

2.5 Parameter Inference 

A Markov chain is described by its state space, one-step TPM and initial state. The state 

space can be determined according to the actual need. For example, shallow subsurface alluvial 

soil textural layers in a soil transect can be classified into several classes (i.e., types) based on 

their hydrologic properties for the purpose of hydrologic modeling. The cell size should be the 

same for both parameter estimation and simulation. The initial state becomes known if one 

boundary point is known.  

To estimate parameters from existing maps or known cross-sections, we need to superimpose 

a lattice on them. The cell size should not be larger than the smallest parcels we want to show in 

simulated realizations. The transition frequencies between the states in the horizontal or vertical 

direction can be calculated by counting the times of a given state (e.g., Si) followed by itself or 

the other states (e.g., Sj) in the direction on the lattice, and then the one-step transition 

probabilities (for the one-dimensional Markov chain in that direction) can be obtained by 

dividing the transition frequencies with the total number of transitions as below: 





n

j

ijijij TTp
1

                                                                                (9) 

where, Tij is the one-step transition frequency from state i to state j in horizontal  or vertical 

direction on the lattice. Conditional joint transition probabilities for the CMC can be further 

calculated based on Eq. (8).  

In practical applications, an original map is normally unavailable for parameter estimation; thus, 

TPMs have to be estimated from soft information and hard data, such as expert knowledge, 

borehole data, existing maps delineated by other methods, or even information derived from similar 

areas. The surface boundary, if needed in a simulation, normally can be obtained from field transect 

survey or existing maps. When the number of boreholes is not sufficient, the vertical TPM 

estimated from boreholes may not be reliable and expert knowledge has to be used for adjustment. 

Although Markov chain TPMs are obviously more intuitive than indicator variograms, how to 

estimate reliable TPMs from soft information still depends on users’ knowledge acquirement about 

their study area, and a trial-and-adjustment process may be needed. Rosen and Gustafson (1996) 

and Weissmann et al. (1999) all presented some suggestions for using soft information for 

parameter estimation in Markov chain modeling. The critical knowledge for estimating a TPM 
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includes: (1) proportions of categories, (2) mean lengths of certain categories in the direction, 

and (3) facies juxtapositional tendencies (Weissmann et al., 1999). Further research is needed to 

build a complete procedure easy to follow. In this study, to test the proposed method, we use 

one-step TPMs that are directly estimated from the reference map by counting state changes on 

the lattice, as normally done in model testing (Lin and Harbaugh, 1984; Elfeki and Dekking, 

2001) so that the TPMs are representative for the simulations.  

 

2.6 Implementation Procedures 

Monte-Carlo sampling is used to conduct stochastic simulations. A simulation procedure for 

the proposed model is comprised of the following steps: 

Step 1: The two-dimensional domain to be simulated is discretized as a grid.  

Step 2: Known conditioning data (e.g., top boundary and borehole data) are inserted into their 

locations in the domain.  

Step 3: If the upper boundary is not known, simulate it: if no point data available, use Equation 

(1) to extrapolate and the initial point can be chosen randomly or from the estimated proportions of 

different states; but if there are some point data along the upper boundary of the transect, use 

Equation (3) to interpolate between two points. If the boreholes are too sparse, consider inserting 

vertical lines between boreholes using the one-step Markov transition probabilities in Equation (1). 

Then use the one-dimensional Markov chain method in Equation (3) to produce bottom boundary 

and some interior lateral lines according to the predefined positions and number. Inserting how 

many simulated lines and where inserting them are decided by users. Note, interior boreholes and 

simulated data lines will split a domain into small windows (see Fig. 1). 

Step 4: Generate the left unknown cells within each window row by row from the top-left 

corner to the bottom-right corner using the conditional joint transition probabilities (see Eq. (8))  

Step 5: The procedure continues until all unknown cells in the two-dimensional domain are 

visited.  

Step 6: Repeat step 3 to step 5 to produce the next realization.      

Step 7: Calculate probability maps of each states and output results. 

 

2.7 Study Example 

A 5,250m long and 2m deep alluvial soil transect from the North China Plain is used as a 

study example to test the model (Fig. 2). This transect includes four states (i.e., four types of 

sediment textural layers), namely, sand, sandy loam, loam, and clay, denoted as 1, 2, 3 and 4, 

respectively, with strong layer extensions in the lateral direction. State 1, 2, 3, and 4, respectively, 

account for 30.84%, 28.02%, 17.18% and 23.96% of the transect area. So state 3 is relatively a 

minor one (i.e., infrequently occurring). State 2 dominates the upper part and state 1 the bottom 

part. The vertical transect is discretized into a grid of 310 columns and 43 rows. TPMs are 

directly estimated from this transect by counting transitions between different states on the grid 

and using Equation (9). The estimated TPMs in the horizontal (from left to right) direction and 

the vertical (from top to bottom) direction are shown in Table 1. Proportions of different states 

are given in Table 2.  The TPMs directly estimated from the sample transect will be used as input 

parameters for testing the model.  
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Figure 2. An alluvial soil transect with four types of sediment textural layers from the North 

China Plain. 

 

Table 1. Input parameters estimated from the alluvial soil transect in Figure 2 

                              States:  4           Number of columns: 310        Number of rows: 43 

                                          TPMa in the horizontal direction            TPM in the vertical direction   

Soil textural layer type       1           2            3             4                 1            2            3            4 

          1                  .9731    .0057    .0106    .0106        .9196    .0041    .0411    .0352 

          2                  .0013    .9781    .0053    .0153        .0211    .8741    .0240    .0808 

          3                  .0216    .0100    .9632    .0052        .0790    .0384    .8358    .0468 

          4                  .0140    .0105    .0070    .9685        .0822    .0542    .0273    .8363 
a Transition probability matrix 

 

2.8. Simulation Schemes 

We will simulate the soil transect using the proposed method and compare simulated results 

with those simulated using the previous CMC model to demonstrate the effectiveness of the 

proposed method for sparse borehole data. Simulations will be done under different conditioning 

schemes with respect to different numbers of boreholes and simulated lines. Vertical lines will be 

inserted only when the boreholes are very sparse or no boreholes are available. The data lines 

(including boreholes and simulated lines) will be distributed uniformly within the transect (i.e., 

with approximately equal intervals). Specific simulated schemes for each simulation will be 

shown in the labels of realizations and probability maps so that they are clearer to be seen. We 

will simulate 100 realizations for each simulation, but only give the first realization and the 

corresponding probability map of the most infrequently occurred state – the state 3 for most 

simulations. For all conditioning schemes, state proportions are averaged from the first 100 

realizations in each simulation and corresponding computer run times are recorded. 

 

2.9.    Probability Maps 

Probability maps will be used to show how likely a state occurs at every location in the 

simulated realizations or whether multiple realizations display similar patterns. A probability 

map is calculated as follows: When a state occurs at a location in a realization, its indicator value 

is denoted 1, otherwise 0. By dividing the sums of indicator values from multiple realizations 

with the number of realizations, we can get a probability map of a state with probability values 

from 0.0 to 1.0, which shows the probabilities of a state occurring at every location. The 

probability maps provided here are calculated from the first 100 realizations of each simulation.  

 

3.  Results 
3.1 Zero Borehole 
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The CMC model of Elfeki and Dekking (2001) is not suitable for unconditional simulation, 

not only because it has to be conditioned on three boundaries, but also because of the 

deficiencies mentioned above. Unconditional simulation may be useful for understanding 

subsurface formations when there is no measured data available for conditioning but parameters 

may be estimated in other ways (e.g., from soft information). By inserting simulated lines 

generated by one-dimensional Markov chain methods, unconditional simulation can be done in 

the proposed method.  

 

Table 2.  Averaged area proportions of different components in simulated realizations under 

different conditioning schemes.  

Model    No. of          Conditioning schemes      Component proportions      Borehole        Computer run 

               realizations    BHa     SVLb    SLLc         1         2          3          4     interval (m)    time (Minute)d 

Original      -e                -                  -           .308    .280    .172    .240         -                     - 

 

mCMC      100             0       17      10          .338   .260    .173     .229         -                     2 

 

CMC       100  2         -         -          .321   .416    .037     .226       5250               14 

mCMC      100             2        7         4          .362   .290    .132     .216       5250                2 

mCMC      100  2       15        9          .354   .257    .170     .219       5250                2 

 

CMC         100             4         -         -           .412   .290    .058     .241      1750                5 

mCMC      100             4        9         4          .388   .251     .131     .230      1750                3 

mCMC      100             4      13        9           .351   .254     .155     .241      1750                2 

 

CMC       100  7         -         -          .418   .283      .074    .225       875                3 

mCMC      100             7        6         4          .399   .250      .131    .220       875                3 

mCMC      100  7        6         9          .360   .249      .155    .236       875                2 

 

CMC       100  17       -        -           .331   .281      .145    .243       385                2 

mCMC      100             17      0        4           .336   .271      .156    .237       385                3 

mCMC      100  17      0        9           .311   .289      .164    .236       385                3 

 

CMC       100  32       -        -           .314   .279      .173    .235      170                 1 

mCMC      100             32      0        4           .320   .274      .172    .234      170                 2 

mCMC      100  32      0        9           .308   .283      .175    .233      170                 2 
a Number of boreholes. b Number of simulated vertical lines. c Number of simulated lateral lines. 
d Recorded by computer. e Not applicable. 

 

The advantage of the proposed mCMC method is the ability of conditioning on measured 

data, which is derived from the CMC methodology. Therefore we will not do completely 

unconditional simulation. Figure 3 presented simulation results using the mCMC method, which 

are only conditioned on 17 point data on ground surface; no borehole is used. All outer 

boundaries and inner lines are simulated by using one-dimensional Markov chain methods. 

Labels on realizations and probability maps denote the method used, number of boreholes, 

simulated vertical lines and lateral lines, and state (e.g., mCMC-0-17×10-3 means using the 
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proposed method, 0 borehole, 17 simulated vertical lines, 10 simulated lateral lines, and the state 

3). This convention will be kept in all the following figures. 

From Figure 3 it can be seen that plausible realizations (Two are shown here) can be 

generated. The probability map of state 3 shows the influence of the point data on the ground 

surface, where state 3 occurs at several points. State 4 is not occurred on the ground surface, 

therefore there are no preferred occurring locations in the probability map of state 4. The 

averaged areal proportions of different states in realizations are very close to the original data 

(Table 2). Computer run time (for 100 realizations) is just two minutes.  
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Figure 3. Simulated results conditioned only on surface point data using the mCMC model. All 

data lines are uniformly distributed (i.e., with equal intervals). Labels on realizations represent 

method used, number of boreholes, simulated vertical lines and simulated lateral lines. The last 

number in labels of probability maps represents the state (class) number. Following figures will 

follow this convention.   

 

3.2 Two Boreholes 

Because the upper and two side boundaries are necessary in the CMC model of Elfeki and 

Dekking, for the convenience of comparing results, all simulations in the following will assume 

the three boundaries are known.  

Figure 4 gives simulated results with two boreholes, i.e., the two side boundaries. This means 

that the borehole interval is about 5250m, a very spare dataset. It can be seen that the layer 

inclination and under-estimation of state 3 are clear in the simulated results from the CMC model, 

but with help of simulated lines, these deficiencies are largely mitigated and the realizations 

becomes reasonably plausible. It also can be seen that the numbers of simulated vertical lines and 

lateral lines have influence on simulated realizations. State proportions of simulated results using 

the mCMC method (Table 2) are more close to the original data. 
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Figure 4. Simulated results using two boreholes (and the upper boundary) and different 

conditioning schemes. The top-right map is an indicator map of state 3. The upper boundary will 

always assumed known in the following figures. Every displayed realization is the first one in the 

simulation, same for the following figures. 

 

3.3 Four Boreholes 

Simulated results using 4 boreholes are given in Figure 5. This means a borehole interval of 

about 1750m. It can be seen that under this sparsity of borehole data the simulated results from 

the CMC model still have clear prediction artifacts, i.e., the layer inclination along the simulation 

ordering, and the minor state 3 is clearly under-estimated (correspondingly major states such as 

the state 1 is over-estimated). Simulated lines clearly mitigate these problems. The conditioning 

scheme with the simulation on the bottom row of Figure 5 gives more reasonably plausible 

realizations. The influence of the 4 boreholes can be seen in probability maps of the state 3, 

which show that the occurrence of the state is more certain near boreholes. 
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Figure 5. Simulated results using four boreholes but different conditioning schemes. 

 

3.4 Seven Boreholes 
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In Figure 6 the number of boreholes is increased to 7, which means the borehole interval 

decreases to about 875m. We still can see the layer inclination problem (see Fig. 6, second row, 

left) and the under-estimation of the minor state 3 (see Fig. 6, second row, right) in the simulated 

results from the CMC model. But with inserted lines used in the mCMC method, the simulation 

effectiveness is improved a lot: it can be seen that with this density of boreholes the state 3 is 

more fairly represented in realizations and simulated realizations with suitable numbers of 

simulated lines (see Fig. 6, bottom) are also closer to the original. 
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Figure 6. Simulated results using seven boreholes but different conditioning schemes. 

 

3.5 Seventeen Boreholes 

We use 17 boreholes in simulations shown in Figure 7. The borehole interval decreases to 

385m.  It can be seen that the CMC model has overcome the layer inclination problem under this 

density of boreholes, and the simulated realization is quite similar to the original. The under-

estimation of minor states (and the over-estimation of major states) is also not obvious (Table 2). 

But inserting simulated lateral lines still have positive effect, no matter in mimicking the spatial 

patterns and representing areal proportions of different states.  

But under this density of boreholes, inserting vertical lines is not suitable anymore, because 

the borehole interval is already obviously less than the layer mean lengths of most states, which 

means that the influences of neighboring boreholes on the simulations already can reach to each 

other. Under this situation inserting vertical lines will disturb the influence of borehole data 

because the inserted vertical line has no spatial correlation with the neighboring boreholes.  
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Figure 7. Simulated results using 17 boreholes but different conditioning schemes 

 

3.6 Thirty-two Boreholes 

When the density of boreholes further increases to an extremely high density, for example, 

the borehole interval decreases to 200m or so, the CMC model will be sufficient in mimicking 

the spatial patterns and representing the proportions of different states in the original soil transect. 

Inserting simulated lateral lines will be not very necessary. Figure 8 shows simulated results with 

32 boreholes, i.e., a borehole interval of about 170m. We can see that the simulated realizations 

with or without simulated lateral lines are similar and all closely resemble the original (Table 2). 

But with the simulated lateral lines, it seems that layers in simulated realizations are more similar 

with their counterparts in the original map in terms of layer shape. In general, when boreholes 

are sufficient for the CMC model, inserting lateral lines will not help much but also has no bad 

effect.  
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Figure 8. Simulated results using 32 boreholes but different conditioning schemes 

 

4. Discussion 
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4.1 Tradeoffs 

In the above simulations, with the number of boreholes gradually increasing it is 

demonstrated that simulated lines have obvious effect in mitigating the deficiencies of the CMC 

model. However, this mitigation comes with tradeoffs in the possible disturbance of spatial 

relationship of alluvial soil textural layers because the inserted simulated lines are not spatially 

correlated. The consequences are that long layers may be shortened because of the simulated 

vertical lines and thick layers may be thinned because of the simulated lateral lines. This tradeoff 

is clear when boreholes are very sparse and simulated vertical lines are inserted. When boreholes 

are not very sparse, boreholes may effectively hold the vertical sequence of layers (without 

fragmentation) because simulated lateral lines are actually conditioned on boreholes. Therefore, 

cautiously choosing the number of simulated lines according to the borehole density is necessary 

to avoid serious negative consequence. How to effectively correlate the simulated lines each 

other and with boreholes is an issue in next step of study. 

  

4.1 Suitable Numbers of Simulated Lines 

The suitable numbers of simulated vertical lines and lateral lines for the proposed method 

depend on specific applications; the same is true with the sufficient number of boreholes for the 

CMC model. Our simulations indicate that when a straight layer is crossed by more than two 

boreholes, this layer will usually be captured between the boreholes in the CMC model. This 

means that the influence of a borehole can be as far as the half length of the layer in the lateral 

direction. Therefore, if the borehole interval is obviously less than the length of most short layers, 

the number of boreholes will probably be sufficient for generating realizations without obvious 

inclination tendency.  

This observation provides the evidence for suitable numbers of simulated vertical lines. This 

means that if simulated vertical lines are used, the suitable interval between simulated vertical 

lines or between simulated vertical lines and boreholes should be close to the layer mean-length. 

Particularly the interval should not be obviously shorter than the layer mean-length; otherwise, 

the simulated layers may be shortened by the excessive simulated vertical lines, because the 

simulated vertical lines have no spatial correlation with each other and with boreholes. Therefore, 

once borehole intervals are less than the layer mean-length, simulated vertical lines are not 

needed any more. 

For simulated lateral lines, similar principle should be taken, i.e., the interval of simulated 

lateral lines should be close to the mean-thickness of layers. The interval should not be obviously 

thinner than the mean-thickness; otherwise the simulated layers may be fragmentized if 

boreholes cannot keep the thickness of layers. Inserting simulated lateral lines has no bad 

impacts when boreholes are sufficient or close to be sufficient. On the contrary, it still helps in 

shaping the simulated layers. The reason is that the densely distributed boreholes can keep the 

layer un-fragmentized by their influence. 

Due to the mean length and thickness of layers are usually not known, users may have to try 

and see for a satisfied simulation scheme. Different users may have different requirements in 

capturing the major subsurface features and how close the areal proportions of different states in 

realizations should be to their expected values. Therefore, the so-called deficiencies are also 

relative to different users and application purposes.  

 

4.2 Stationarity and Local Stationarity 
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Stationarity is a necessary assumption in geostatistics to account for the parameter estimation 

from spatial data because no repetitive data on the same location can be acquired. Such an 

assumption is suitable for a relatively small area or when spatial patterns are relatively identical 

in the study area. For a large area where spatial patterns may be very different in different 

subareas, to represent the different spatial patterns in different subareas, multiple sets of 

parameters may be necessary. Thus, when a large area is divided into subareas for simulation, the 

stationarity assumption only apply in each subarea. The tradeoff is that the workload and 

information needed for parameter estimation will increase. This, is always a tradeoff to be 

considered by users. 

From the reference soil transect we used in this paper, it can be seen that the spatial patterns 

are obviously different in the upper half and the lower half. In the upper part, the state 2 

dominates and state 1 seldom occurs; in the lower part, the situation is opposite. This means the 

stationarity assumption does not apply to the whole transect. If two sets of parameters are 

estimated, one for the upper part and the other for the lower part, there is no doubt that the 

simulated realizations will reflect this difference (i.e., layer type 1 will seldom occur in the upper 

part and layer type 2 will seldom occur in the lower part in realizations when borehole are few). 

 

5. Conclusion 
An idea – using simulated lines generated by one-dimensional Markov chain methods to 

increase the conditioning data for two-dimensional simulation using the extended CMC model, is 

presented with simulations of an alluvial soil transect. The main purpose is to deal with sparse 

borehole data in characterization of shallow subsurface alluvial soil textural layers. Therefore, 

the proposed method, which is based on the CMC theory, serves as a simple complement to the 

CMC model for different application purpose. In the proposed method, the CMC model is further 

extended to condition on future states in the vertical direction with the support of the proposed 

idea. The simulated lines, including simulated vertical lines and simulated lateral lines, are first 

inserted in a two-dimensional domain before two-dimensional simulation is conducted using the 

extended CMC model. These simulated lines further partition the simulation domain, which is 

already partitioned by boreholes, into smaller windows, and then two-dimensional simulation 

can be performed in each window. Through this way, the deficiencies of the CMC model, which 

are obvious in our simulation case when boreholes are sparse, are largely mitigated without 

increasing the number of borehole data. Consequently, hard data sufficiency is not a required 

condition any more in the proposed method for generating plausible realizations without obvious 

unpreferred artifacts and strong under-estimation of infrequent states.  

An alluvial soil transect with four types of sediment textural layers is used as a simulation 

example for comparing the performance of the proposed method with that of the CMC model. 

Different conditioning schemes are used for simulations. For most schemes, the first realization 

and the corresponding probability map of the most infrequent state are displayed. Results 

demonstrate that the proposed method can produce more plausible realizations than the CMC 

model with the same number of boreholes when boreholes are sparse. The proposed method also 

can be used to produce realizations without borehole data.  

Cautions must be taken for inserting simulated lines, because the simulated lateral lines have 

no spatial correlation between them in the vertical direction and the simulated vertical lines have 

no spatial correlation between them or with boreholes in the lateral direction. Inserting simulated 

vertical lines should be particularly cautious. The principle for inserting simulated lines should 

be that the line (including boreholes for vertical lines) interval shouldn’t be obviously shorter (or 
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thinner) than the mean-length (or mean-thickness) of layers; otherwise the layers may be 

seriously shortened (or thinned). The tradeoff for this simple and intuitive strategy is discussed. 

A typical feature of the CMC model is its high efficiency in performance. The proposed 

method still keeps this advantage. No extra parameters are needed. The computation time of the 

proposed method does not increase or even decreases compared with the CMC model (see Table 

2). Only minutes are needed for generating 100 realizations in the simulation case of this study.  

While the proposed method provides a simple solution to mitigate the deficiencies of the 

CMC model for alluvial soil textural layer simulation, there are obvious tradeoffs. Another 

obvious shortcoming for the proposed method is that we have not developed an accurate answer 

for deciding how many simulated lines to insert, which has to depend on users.  
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