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Cao et al. (2011a) recently presented a method to implement the Tau model suggested
by Journel (2002) for conditional simulation of categorical fields. In this article, a spatial
Markov chain (SMC) model proposed by Li (2007a), as stated by them, was compared.
Li (2007a) presented the Markov chain random field (MCRF) theory (or ideas) with a
case study using a specific MCRF model and further suggested the Markov chain geo-
statistics (MCG) framework based on the primitive MCRF theory. A MCRF model may
be called a SMC model and was also called in this way by Li (2007a), because a MCRF
means a random field generated or defined by a special SMC. One reason that we always
used MCRF instead of SMC (or more simply Markov chain) to name our models or
algorithms in our later publications is because SMC is a very general name and may
cover all of those existing Markov chain models used for spatial data. Unfortunately,
Cao et al. (2011a) provided an incorrect SMC model equation with misinterpretations
on the MCRF approach. Following Allard et al. (2011), Cao et al. (2011a, 2011b) also
stated that the MCRF approach was a simplified form of the Bayesian maximum entropy
(BME) approach proposed by Bogaert (2002); Li and Zhang (2012) commented on Allard
et al. (2011), which was published in a soil science journal, to clarify some misun-
derstandings. Although this comment aims to clarify some misinterpretations by Cao
et al. (2011a, 2011b) on the MCRF approach in geographical information science, our
main purpose is to communicate with Cao and other colleagues who may have inter-
ests or misunderstandings in related issues, including those new issues raised by Allard
et al. in their response letter to our comments on their paper. We think such a comment
and communication is necessary to boost mutual understanding because it concerns the
fate of MCG and the whole field of categorical spatial variable modeling. Therefore,
we will only explain and discuss on several major issues rather than pick out specific
sentences.
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1726 W. Li and C. Zhang

1. On Markov chain random field models

In the work by Cao et al. (2011a), the spatial Markov chain (SMC) model proposed by
Li (2007a) was written as equation [7] in the following form:

P{C(x0) = k | c(x1), . . . , c(xN )}SMC

= P{Ik(x0) = 1 | IkL (xL
0) = 1, IkU (xU

0 ) = 1, IkR (xR
0 ) = 1, IkB (xB

0 ) = 1}SMC

= πk|kL (hx
1)πkU |k(hx

2)πk|kR (hy
3)πkB|k(hy

4)∑
l

[πl|kL (hx
1)πkU |l(hx

2)πl|kR (hy
3)πkB|l(h

y
4)]

(1)

where x and y represent the axis directions; kL, kU, kR, and kB all represent the states of
the Markov chain (class indicators) at neighboring locations, xL

0, xU
0 , xR

0 , and xB
0 , in four

cardinal directions; hx
1, hx

2, hy
3, and hy

4 represent the distances between these four nearest
neighbors and the target location x0, as stated by Cao et al. (2011a).

However, the above equation was wrongly written. One cannot find such a SMC model
in Li (2007a). Besides the simplified general solution of Markov chain random fields
(MCRFs), equation [19] in Li (2007a) that considered only four nearest neighbors in four
cardinal directions is also different from this model. Although the style of Equation (1) is
rather confusing, from the transition directions of the transiogram terms, we can guess this
might be the extended coupled Markov chain (CMC) model by Li and Zhang (2006) for
dealing with grid sample data. The CMC model of Elfeki and Dekking (2001) for sub-
surface characterization used two one-dimensional Markov chains and, therefore, had four
such transition probability terms after being extended for horizontal two-dimensional sim-
ulation. However, here the directions represented by x and y (axes) and those by letters L,
U , R, and B are still not identical. Writing the SMC model proposed by Li (2007a) like
this, Cao et al. essentially ignored all of the contents of our publications that established
the MCRF approach in and after 2007.

The CMC model has drawbacks as pointed out with explanation in Li (2007a) and
our other papers (e.g., Li and Zhang 2008), and the drawbacks could also be seen
in some figures in Elfeki and Dekking (2001) and their other papers (e.g., Elfeki and
Dekking 2005). However in our point of view, the CMC model represented a progress
compared with the two-dimensional linear Markov chain model of Lou (1993, 1996),
which generated quite fragmentary patterns in simulated realizations; and both the mod-
els represented some progresses in terms of conditional simulation compared with the
earlier unconditional multidimensional Markov chain models suggested in geosciences
(e.g., Lin and Harbaugh 1984). One may argue that Carle and Fogg (1997) also pro-
posed a multidimensional Markov chain model. That has been a misunderstanding or
confusion. In Carle and Fogg (1997), the continuous-lag one-dimensional and multidi-
mensional Markov chain models were essentially sets of idealized transition probability
models (i.e., idealized transiograms). Because only vertical transition probabilities could be
effectively estimated from borehole data due to the sparsity of boreholes, transition proba-
bility models in other principal directions had to be inferred based on the vertical models,
expert knowledge, and geological interpretation, according to Carle and Fogg (1997).
Transition probability models in any direction other than principal directions were obtained
by interpolating transition probability models in principal directions. This is similar to the
estimation of anisotropic variogram models. However, the interpolated transition probabil-
ity models (or the transition probability interpolation method) were called continuous-lag
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multidimensional Markov chain models in Carle and Fogg (1997) and might not accu-
rately express their actual meanings. Please note that the past traditional uses of transition
probabilities and one-dimensional Markov chains in geosciences did not well differen-
tiate them from each other. Differentiating transition probabilities (the spatial measure)
from Markov chain models (the estimator or simulator) became necessary after conditional
multidimensional Markov chain models emerged in geosciences.

Our initial effort aimed to solve the flaws of the nonlinear CMC model while extend-
ing it for use in predictive soil mapping, because this model could generate convergent
patterns and worked well under some special conditions (e.g., dense conditioning data and
similar class proportions). The real MCRF ideas proposed by Li (2007a) owed these pio-
neer studies in geosciences a lot. It was also related with those studies in Markov random
field models, particularly Markov mesh models, in image analysis and processing. Indeed,
extending classical one-dimensional Markov chains or Markov random fields to a practical
geostatistical approach is not a simple task. Both obtaining ideas to solve related problems
and theoretically rationalizing the novel MCRF ideas were proved to be difficult tasks.
To reach the goal, we had to absorb knowledge, ideas, and lessons related to Markov chain
modeling from geosciences, statistics, and image engineering and solve a series of issues
from transition probability estimation to algorithm design.

Although the term of ‘Markov chain random field’ came to our mind and used in our
manuscripts as early as in 2004, literature search found that we were not the first to use
this term. Veijanen (1993) used this term to refer to a Markov mesh random field model
for image analysis. This was reasonable because Markov mesh models, which constitute
a subclass of Markov random fields, were sometimes also called Markov chain models in
image analysis in the past due to their unilateral nature, but this term was rarely used later.
The random fields generated or defined by a multidimensional Markov chain model cer-
tainly can be called MCRFs. Some even called the simulated realizations by the transition
probability geostatistics proposed by Carle and Fogg (1996) MCRFs due to its connection
to transition probability. However, the MCRF model proposed by Li (2007a) is different
because it is a single-chain random field model for dealing with sparse sample data. It may
be regarded as an extension of Markov mesh random fields. There is no such issue called
‘we assumed an underlying random field’ or ‘we claim we were able to build explicitly a
random field.’ If a Markov random field model could not define or generate a random field,
there would have been no reason to call it a ‘random field’ model.

The MCRF approach came from a single-chain Markov random field idea, which uses
one special Markov chain to do multidimensional simulations. As to how such an idea
came up, see Li (2007a) and Li and Zhang (2008). The MCRF definition states that a single
spatial Markov chain moves or jumps in a space and decides its state at any uninformed
location by interactions with its nearest neighbors in different directions and its last stay
location, as illustrated in figure 1 by Li (2007a). For a MCRF Z(u), assume that i1(u1) is
the state of the last stay location of the SMC, i2(u2) to im(um) are the states of the nearest
neighbors in different directions around an uninformed location u0, and u1 may or may
not be one nearest neighbor of u0. The conditional probability distribution of Z(u) at the
uninformed location u0 can be notated as p[i0(u0)|i1(u1), . . . , im(um)] based on the Markov
property, where i0(u0) denotes the state of z(u0) to be estimated. Emphasizing the single-
chain nature of a MCRF and the last stay location, this conditional probability distribution
can be factorized as

p[i0(u0)|i1(u1), . . . , im(um)] = 1

A
p[im(um)|i0(u0), . . . , im−1(um−1)]

· · · p[i2(u2)|i0(u0), i1(u1)]p[i0(u0)|i1(u1)]
(2)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

on
ne

ct
ic

ut
] 

at
 0

9:
39

 2
7 

Se
pt

em
be

r 
20

12
 



1728 W. Li and C. Zhang

where A = p[i1(u1), . . . , im(um)]/p[i1(u1)] is a normalizing constant and u1 indicates the
last stay location or the location that the SMC goes through to the current location.
Please note that p[im(um), . . . , i2(u2)|i0(u0), i1(u1)] = p[im(um)|i0(u0), . . . , im−1(um−1)]
· · · p[i2(u2)|i0(u0), i1(u1)]; so as long as the last stay location u1 and the current uninformed
location u0 are considered together, the factorization result is the same.

Equation (2) is the explicit full general solution of MCRFs, which was provided as
equation [6] in Li (2007a), although not specifically emphasized. This model is essen-
tially also a multiple-point geostatistical model. The reason for the conditional probability
distribution of Z(u) to be factorized like this (i.e., with one conditional probability term
and multiple likelihood terms) is due to the single-chain Markov random field idea.
Otherwise, it might be regarded as irrational. Li (2007a) may be the first to use such
a way to factorize a multiple-point conditional probability; now many know this also
works and even works better. Similar factorization can be done if a multiple-point joint
probability is used for Z(u). The single-chain Markov random field idea seems simple,
but it is indeed a result of a decade-long concentrated exploration in order to extend
Markov chains to a geostatistical approach. The initial motivation for this research was
to find a suitable method to simulate the spatial distributions of soil types and soil
layers.

Assuming the SMC is stationary and its last stay location u1 is far away from the
current uninformed location u0, one can delete i1(u1) from all of the probability terms in
Equation (2) because its influence may be ignored. Then Equation (2) becomes

p[i0(u0)|i2(u2), . . . , im(um)] = 1

A
p[im(um)|i0(u0), i2(u2), . . . , im−1(um−1)]

· · · p[i2(u2)|i0(u0)]p[i0(u0)]
(3)

which can be rewritten as

p[i0(u0)|i1(u1), . . . , im(um)] = 1

A
p[im(um)|i0(u0), i1(u1), . . . , im−1(um−1)]

· · · p[i1(u1)|i0(u0)]p[i0(u0)]
(4)

where A = p[i1(u1), . . . , im(um)] is a normalizing constant and u1 is just a nearest neighbor
of u0 and the last stay location of the SMC is not included. Equation (4) is the tradi-
tional method used for factorizing a multiple-point conditional probability (similarly for a
multiple-point joint probability), and it turns out to be a special case of MCRFs.

Both the Equations (2) and (4) cannot be directly estimated from sparse sample data
due to the multiple-point probability terms, which are also the functions of multiple
lag distances. Therefore, further simplification is necessary. If we apply the conditional
independence assumption, Equation (2) becomes

p[i0(u0)|i1(u1), . . . , im(um)] = 1

A
p[im(um)|i0(u0)] · · · p[i2(u2)|i0(u0)]p[i0(u0)|i1(u1)] (5)

which, written in the transiogram style, further becomes

p[i0(u0)|i1(u1), . . . , im(um)] = pi1i0 (h10)
∏m

g=2 pi0ig (h0g)∑n
f0=1 [pi1f0 (h10)

∏m
g=2 pf0ig (h0g)]

(6)
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Here pi0ig (h0g) represents a transition probability function, that is, a transiogram, from class
i0 to class ig over the lag distance h0g, which is not dependent on specific locations with the
intrinsic stationarity assumption.

Similarly, after the conditional independence assumption is applied, Equation (4) finally
becomes

p[i0(u0)|i1(u1), . . . , im(um)] = pi0

∏m
g=1 pi0ig (h0g)∑n

f0=1 [pf0

∏m
g=1 pf0ig (h0g)]

(7)

where pi0 is the marginal probability or expectation of class i0. Note that estimating pf0
from a set of samples within a local window does not eliminate the stationarity assumption
on pf0 .

Equation (6) is the simplified general solution of MCRF models, provided in Li (2007a)
as equation [12]. Equation (7) is a special case of Equation (6) and also can be derived from
Equation (6), as explained in Li and Zhang (2012). With Equation (6), Equation (7) may
not be much useful because as long as the uninformed location u0 has nearest neighbors
we always can use one of them to serve as the last stay location by assuming that the
SMC comes to the current uninformed location through the nearest neighbor. However,
Equation (7) was proposed by Allard et al. (2011) to be a simplified BME (Bayesian max-
imum entropy) and a generalization of the MCRF approach, and it was also provided
by Cao et al. (2011a) (i.e., equation [8] in the paper) as a simplified variant of BME
and a so-called multinomial regression model. Following Allard et al. (2011), Cao et al.
(2011a, 2011b) also stated that the MCRF (or SMC) model proposed by Li (2007a) was
Equation (1), which could be generalized to a simplified BME, by ignoring the existence
of Equations (2) and (6) in Li (2007a), and thus further messed the MCRF approach (or
Markov chain geostatistics (MCG)).

Cao et al. (2011a) stated that the naïve Bayesian network was tantamount to the
MCRF (i.e., SMC) model. This is a misunderstanding. Bayesian networks (including naïve
Bayesian networks) are a kind of methods proposed for artificial intelligence or machine
learning. A Bayesian network is a network of directed, acyclically connected events (or
variables), in which variables represented by nodes may be observed (evidence nodes)
or not (hidden or latent nodes) and may have very different natures (e.g., chair, back,
and ache), and edges represent causal relations. Naïve Bayesian networks used the con-
ditional independence assumption as noted in Li (2007a), but using such an assumption
did not make a naïve Bayesian network a MCRF model. Bayesian networks do not con-
sider spatial locations and lag distances and are rarely used as spatial models, let alone
as a geostatistical model for modeling a multiclass categorical variable based on sparse
sample data. If one had the imagination to adapt a naïve Bayesian network into a geosta-
tistical model to simulate categorical spatial variables conditioned on sample data before
the emergence of MCG, he/she should have made a significant progress in geostatistics.
The MCRF model is a nonlinear geostatistical model for estimating the local conditional
probability distribution of a categorical spatial variable based on nearest data. The rela-
tionships between an uninformed location and its nearest neighbors (informed locations)
in a MCRF model are not parent–children relationships. The arrow directions illustrating
a MCRF in our papers represent transition probability directions. The MCRF approach
has its unique characteristics as introduced above, which make it different from other
nonlinear geostatistical models such as the BME model proposed by Bogaert (2002).
Although the special case of the simplified general solution of MCRFs – Equation (7) –
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1730 W. Li and C. Zhang

has some similarity in its expression to naive Bayesian networks due to the common
uses of the Bayes’ theorem and conditional independence assumption, they are essen-
tially different things for different purposes. If the MCRF approach was initially adapted
from or inspired by naive Bayesian networks, we would have had no reason to hide it
and turn to connect our model to the CMC model of Elfeki and Dekking (2001). As to
Equation (1), the wrong equation provided by Cao et al. (2011a), it even has no similar-
ity in expression to naïve Bayesian networks. Here we do not discuss the rationality of
the implementation method of the Tau model proposed by Cao et al. (2011a) and how
it was inspired. However, attempting to classify both the MCRF approach and the Tau
model into Bayesian networks seems difficult. There seems no ratio involved in Bayesian
networks.

A MCRF is a special Markov chain and also a special causal Markov random field.
Single-chain, transition probabilities (including multidimensional multiple-point transi-
tion probabilities for the full solution) and directional interactions are the basic features
of MCRF models; and for the simplified general solution, the conditional independence
assumption is also applied. The single-chain random field idea has proved to be unique.
How to implement the MCRF ideas in algorithm design and parameter estimation, how to
deal with data clustering, whether to write the model as a joint probability distribution, and
whether to use the log-linear form or ratios are all topics to study.

A real exhaustive dataset (i.e., an image) or a simulated realization is usually regarded
as a random field. The probability expression of a whole random field (all uninformed
pixels in a finite lattice) is a theoretical random field, which can be decomposed as a general
sequential algorithm like

p[j1(u1), . . . , jN (uN )|(n)] = p[jN (uN )|(n + N − 1)] · · · p[(j2(u2)|(n + 1)]p[j1(u1)|(n)] (8)

where j1(u1), . . . , jN (uN ) represent all of the uninformed pixels to be simulated, n informed
pixels (i.e., sample data), and N + n the total number of pixels in the whole finite random
field. n is zero if no sample data are available. The simulation of these unknowns has to
follow a visiting sequence (e.g., a random path) in a simulation process, that is, one needs
to first simulate j1(u1) conditioned on the n sample data, then simulate j2(u2) conditioned
on the n sample data plus j1(u1), . . . , and finally simulate jN (uN ) conditioned on the n
sample data plus all previously simulated N – 1 data. Such a general sequential simulation
algorithm does not contain a specific estimation model, that is, it does not provide any
information on how to estimate a specific unknown such as jk(uk). One has to find an esti-
mation model (i.e., estimator), which may be linear or nonlinear, to estimate the conditional
probability term p[jk(uk)|(n + k − 1)], where k – 1 is the number of previously simulated
data. For the conventional sequential Gaussian simulation algorithm, the estimation model
is kriging. For the conventional sequential indicator simulation algorithm, the estimation
model is indicator kriging. For a MCRF sequential simulation algorithm, the estimation
model must be a MCRF model. The MCRF model deals with the conditional probability
p[jk(uk)|(n + k − 1)], which, after the Markov assumption and the single-chain assump-
tion are applied, becomes p[i0(u0)|i1(u1), . . . , im(um)]. Apparently, the MCRF approach or
MCG is not just a sequential simulation algorithm based on the trivial decomposition (8).
A MCRF model is an estimation model of a multiple-point conditional probability.

In addition, other than sequential simulation, one may also use a probability estimation
model to do optimal interpolation, as kriging has been traditionally used. However, optimal
interpolation doses not truly generate a random field due to the smoothing effect.
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2. On the transiogram spatial measure

Cao et al. (2011a) thought that the MCRF (i.e., SMC) model was proposed by Li (2007a)
based on the concept of a transiogram. But the fact is that the concept of a transiogram was
proposed by Li (2007b) purely as an accompanying spatial measure of MCG. The CMC
model, which was first extended by Li et al. (2004) to work with soil survey line data in
horizontal two dimensions, also needed this spatial measure when it was further extended
for simulations conditioned on regular sample data. If it was not because our Markov chain
methods needed such a spatial measure to conveniently work with sparse sample data,
there would have been no reason for Li to propose such a concept. On the contrary, merely
with such a concept, one may not be able to develop a reasonable Markov chain model for
conditional simulation.

The term of ‘transiogram’ is an abbreviation of transition probability diagram and is
also an analog to the ‘variogram’ term used in classical geostatistics. A transiogram the-
oretically refers to a transition probability function over the lag distance. The purpose of
suggesting such a simple name was merely to provide a convenient, nonconfusing term
for the transition probability spatial measures (Li 2007b). As one can see that when a
Markov chain or Markov random field model is extended into a geostatistical model and
written in the form of Equation (6) – the simplified general solution of MCRFs – the
transiogram naturally emerges as a two-point spatial measure and is also an indispensable
spatial measure for MCG (Li and Zhang 2008). We were aware that visual transition prob-
ability diagrams and transition probability functions over lag distances had been used by
earlier researchers in geology with different names, as noted in Li (2007b) – the first full
paper to address the related concepts and estimation and modeling issues of transiograms.
For our knowledge, a diagram of multistep transition probabilities calculated from a one-
step transition probability matrix first appeared in Schwarzacher (1969); Lou (1993, 1996)
used the notation of transition probability functions and extensively demonstrated such
kind of transition probability diagrams for geological structure analysis, and called them
‘Markov diagrams.’ Carle and Fogg (1996) used transition probability functions as spa-
tial measures to reformulate indicator kriging/co-kriging systems, and they also proposed
using transition rate-derived models (called ‘continuous-lag Markov chain models’) to
jointly fit the Markov diagrams estimated from borehole data (Carle and Fogg 1997). The
pioneer studies, particularly Carle and Fogg (1996, 1997), were important in pushing tran-
sition probabilities into a spatial structure measure. However, both Markov diagram and
transition probability diagram have been often used to refer to the schematic diagrams of
Markov chain models. This situation necessitates a new specific term for the lag-based
transition probability spatial measures. The transition rate-derived transition probability
models were found to be identical with idealized transition probability diagrams calcu-
lated from one-step transition probability matrix, and they both were regarded as ‘idealized
transiograms’ by Li (2007b). Li (2007a) and Li and Zhang (2008) extended Markov chains
into a theoretically sound practical geostatistical approach for conditional simulation on
sample data and consequently established the transiogram as the spatial measure of MCG.
Because the transiogram is indispensable to MCG, the estimation and modeling, partic-
ularly joint modeling, of transiograms become crucial issues of MCG, and we therefore
extensively explored these issues in recent years. We are the first to estimate transiograms
from sparse point sample data, and we also proposed two practical transiogram joint
modeling methods and a set of transiogram models (Li 2007b, Li and Zhang 2010,
Li et al. 2012).

Cao et al. (2011a) stated that ‘an exponential form of transiograms was also discussed
in Li (2006), in the absence, however, of a clear underlying theory.’ In fact, as a technique
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1732 W. Li and C. Zhang

note, Li (2006) only talked about the basic concepts about transiograms and their meanings
and demonstrated several typical shapes of idealized and experimental transiograms. The
major purpose of this short article was to propose the use of transiograms as an independent
spatial measure for characterizing the intra- and inter-class relationships of categorical spa-
tial variables. An extensive introduction of transiograms with examples was provided by Li
(2007b). There is no other complex underlying theory related to a transiogram itself, except
for the basic properties of transition probabilities and stationary first-order Markov chain
transition probability matrix, as presented in Li (2007b). The transiogram spatial measure
emerged because it was needed in Markov chain or transition probability-based spatial
models for conditional simulations. How to estimate transiogram models from expert or
geological knowledge reasonably is another issue, which was first explored by Carle and
Fogg (1997).

3. On conditional independence assumption

The conditional independence assumption was used in Li (2007a) to obtain a simpli-
fied general solution of MCRFs. This assumption is just a practical assumption and has
been often used in statistical models. It apparently does not hold for all situations but
its practicality was proved by many application cases (e.g., Besag 1986). A very early
application of this assumption can be found in Chow (1962) where adjacent neighbors
in cardinal directions were assumed to be conditionally independent in recognition net-
work. However, under some special conditions such as in Pickard random fields (PRFs),
this assumption is true for adjacent neighbors in cardinal directions. Li (2007a) found that
this assumption also can be regarded as proper for nearest neighbors in cardinal directions
in a sparse data space if the unknown real field is assumed to be a PRF. This does not
mean that such an assumption is always true for real-world data. The conditional indepen-
dence of adjacent neighbors in cardinal directions for a rectangular lattice is a property of
PRFs (Pickard 1980, Haslett 1985, Besag 1986, Rosholm 1997), rather than a theoretically
proved common property of real-world datasets.

Verhagen (1977) proposed a special two-state process model in order to help explain the
stochastic behavior of a hard-core lattice gas with on/off states in chemical physics. This
work inspired Pickard to give the proposed new process a rigorous theoretical treatment
in Pickard (1977, 1980). The associated class of random fields was later named after him
as a tribute to his theoretical contributions. The original description of PRFs was mainly
concerned with a binary process, but the model is valid for both the continuous and mul-
ticategorical phenomena. Haslett (1985) should be credited as the first to use this type of
random fields intelligently in a classification context. A systematical introduction of PRFs
and its properties can be found in Rosholm (1997). PRFs have found many applications in
image and signal processing during the last two decades.

A PRF possesses the property of being simultaneously a Markov random field and a so-
called Markov mesh (Besag 1986, Rosholm 1997) on a finite rectangular lattice. Besides
this property, a PRF has the following four important characteristic properties: (i) a PRF is
a homogeneous (i.e., stationary) second-order Markov random field with respect to a neigh-
borhood of eight nearest neighbors; (ii) the distribution of a PRF is uniquely determined by
the marginal distribution of any 2 × 2 subset in the image; (iii) the four adjacent neighbors
(or four adjacent pixel blocks along a cross) of a given pixel are conditionally independent
given the value of the surrounded central pixel; and (iv) a PRF contains embedded Markov
chains along every monotone path in an image lattice (Haslett 1985, Besag 1986, Rosholm
1997). A MCRF does not necessarily have all of these properties because it is a generalized
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single-chain-based random field and may not be stationary. However, for the situation of
the four (or less) nearest neighbors found in four cardinal directions by assuming a rect-
angular lattice, the conditional independence property of a PRF is applicable to the sparse
data space (Li 2007a, Li and Zhang 2008). This finding can strongly support the neigh-
borhood choice of using four nearest neighbors in four cardinal directions or quadrants
in MCRF algorithm design, as done by Li and Zhang (2007). Such neighborhood design
may avoid the difficulty in coping with data clustering effect. Apparently, simply ignoring
data clustering effect is not preferable unless it is inevitable. Therefore, regarding the PRF
theory as the theoretical foundation of MCRFs is a misunderstanding.

Cao et al. (2011a) thought that the Tau model proposed by Journel (2002) based on the
permanence of ratios implied conditional independence, and therefore, as a special case of
the Tau model (when τ n = 1), the permanence of ratios is a general form of conditional
independence. This viewpoint seems arguable. First, the permanence of ratios assumes that
ratios of information increments are typically more stable than the increments themselves.
This is not a conditional independence assumption of data events. Using D1 and D2 to
represent two data events and using A to represent the event to be inferred (Cao et al.
2011a), the permanence of ratios amounts to assuming

1 − P(A|D1, D2)

P(A|D1, D2)

/
1 − P(A|D1)

P(A|D1)
≈ 1 − P(A|D2)

P(A|D2)

/
1 − P(A)

P(A)
(9)

This assumption means that ‘the incremental contribution of data event D2 to knowledge
of A is the same after or before knowing D1,’ as stated by Journel (2002). It seems difficult
to say that the data independence implied in Equation (9) or in the statement is the con-
ditional independence between D2 and D1 given A. This equation seems containing some
ingredient of the full independence between A and D1, but using ratios may largely reduce
the negative effect. Journel (2002) suggested to add a power parameter (i.e., the tau param-
eter) on the right-hand side of Equation (9) to reduce the effect of ignoring D1 after D2

appears. Second, Journel (2002) opposed the uses of both the full independence and the
conditional independence assumptions in dealing with the dependence of data events. The
data independence in Equation (9) is neither full nor conditional independence (Journel
2002). Here, we are not saying the Tau model is not a good model, but it seems difficult to
say the permanence of ratios to be a general form of conditional independence as asserted
by Cao et al. (2011a).

It is true that Journel (2002) demonstrated that the permanence of ratios hypothesis
appeared more robust than the full independence and conditional independence hypothe-
ses and that the latter two might not guarantee some limit conditions. However, the article
did not obtain a suitable equation for examining conditional independence, because the law
of total probability with conditional independence was not applied to the denominator (i.e.,
the marginal probability) in deriving equation [15] for examining the conditional indepen-
dence hypothesis. This may not impact the permanence of ratios and the Tau model but
may lead to unsafe conclusions. Because of the difficulty in parameter estimation, Journel
(2002) did not implement the Tau model.

Both the full independence and conditional independence assumptions can be prac-
tical if used in suitable places. Full independence is traditionally used in multivariate
linear regression models, where predictor variables are assumed to be fully independent
on each other. This gives multivariate linear regression the power to incorporate a number
of different variables, which cannot be implemented practically in co-kriging. Conditional
independence is often assumed in nonlinear models, such as Bayesian inference models
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and Markov random field models, and is often found to be practical. When conditional
independence is assumed, the law of total probability has to be applied to the marginal
probability (e.g., P(D1, D2) at here) simultaneously with the same assumption and there
will be no violation of limit properties. However to seek optimality, the data clustering
effect (or redundancy) is still an issue to be considered; after all, statistical assumptions and
the properties of random processes may deviate from the properties of real-world datasets.

4. On Bayesian inference and the maximum entropy principle

Recently, D’Or et al. (2008) and Allard et al. (2009, 2011) suggested an efficient method
for modeling categorical spatial variables. It was first called ‘multinomial regression’
although it had nothing to do with regression, then called ‘multinomial categorical simula-
tion,’ and finally called ‘Markovian-type categorical prediction’ (MCP). The MCP model
was claimed to be a simplified BME and a generalization of the MCRF approach. The
MCRF ideas were clearly presented in Li (2007a) and Li and Zhang (2008) with introduc-
tions on why the ideas came up. However, Allard et al. (2011) not only ignored the contents
of these two papers but also the MCRF model was wrongly written and misinterpreted as
a two-chain model. The so-called MCP model is actually a special case of the simplified
general solution of MCRFs, that is, Equation (7) in this comment. The neighborhood struc-
ture used in the MCP algorithm is also an inferior one because it ignored the effect of data
clustering in conditional simulation, as pointed out by Li and Zhang (2012). Following
D’Or et al. and Allard et al., Cao et al. (2011a, 2011b) also made misinterpretations on the
MCRF approach and stated that the so-called simplified BME was a generalization of the
MCRF approach. Cao et al. (2011a) provided a comparison study between the Tau model
and the SMC model. The SMC model implemented by Cao et al. (2011a) should be the so-
called MCP method of Allard et al. (2011) rather than Equation (1) because the extended
CMC model still underestimates minor classes when samples are not dense enough. Cao
et al. (2011b) conducted a comparison study between a so-called multinomial logistic
mixed model (a variant or equivalent of the simplified BME) and the simplified BME
(i.e., the so-called MCP method, which was claimed to be a generalization of the MCRF
approach but is essentially a special case of the simplified general solution of MCRFs). Li
and Zhang (2012) commented on Allard et al. (2011) and pointed out their misunderstand-
ings. However, they stated they deliberately wrote the wrong equation and then they raised
some new issues to question the MCRF approach in their response letter. We have proven
above that those new issues raised by them were also misunderstandings, probably caused
by their lack of knowledge in Markov random fields and sequential simulations.

To further clarify these confusions and misinterpretations, we need to clarify the mean-
ings of BME. BME is essentially a combination of the Bayesian inference principle and the
maximum entropy inference principle (i.e., the principle of maximum entropy). These two
are very general statistical principles that one may consider when constructing a probabil-
ity model, no matter whether the model is spatial or not. For our knowledge, the Bayesian
inference principle means that when one builds a probability model the model construction
should follow the style of

posterior ∝ likelihood × prior

where the posterior probability represents an update of the prior probability based on the
evidence (e.g., observed data) through the likelihood. If the Bayes’ theorem or simply the
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quantitative relationship between joint probability and conditional probability is used in the
derivation of a probability model, the probability model is possible to be in accordance with
this principle. The maximum entropy principle means that when one builds a probability
model for inferring a specific variable he/she should choose the one that has the maximum
information entropy, subject to a set of constraints that represent our incomplete informa-
tion about the target distribution (Jaynes 1957). Although arguments still exist (between
frequentists and Bayesians objective Bayesians and subjective Bayesians), these two prin-
ciples have been promoted and widely used in practice in recent years. A probability model
constructed adhering to these two principles may be called a BME model.

However, we think at least the following three points regarding the two principles
should be kept in mind. First, there is no unique operable and widely applicable BME,
maximum entropy, or Bayesian model for everything. On the one hand, many specific
probability models for similar or different purposes have been proposed with adherence
to these two principles or one of them in recent years. On the other hand, many exist-
ing probability models constructed without the knowledge of or concern with these two
principles were later found to be in accordance with these two principles or one of them;
this should also be the reason why these two principles were established. For example, the
Gibbs, the Gaussian, and the uniform distributions were all found to be a maximum entropy
distribution. As the Gibbs distribution function is the general probability function charac-
terizing Markov random fields, some Markov random field models may be in accordance
with the maximum entropy principle. Second, any practical maximum entropy probability
model is subject to a set of specific constraints. These constraints may be related to statis-
tical assumptions, summary statistics, domain knowledge, target variable properties, local
environmental conditions, expert experience, and/or new findings. Applying different con-
straints will generate different maximum entropy models. Third, without an in-depth study
on a specific topic, one may not be able to build a practical model simply with the two prin-
ciples, because these two principles do not provide a specific solution for a specific issue.
For example, how to solve a complex likelihood function, how to set a prior probability,
and how to measure and estimate the spatial dependence of a set of data or variables are
tasks for modelers to deal with.

Now let us check the MCRF models again. Looking at Equation (2) – the explicit full
solution of MCRFs – one can find it is in accordance with the Bayesian inference formu-
lation: p[i0(u0)|i1(u1), . . . , im(um)] is the posterior probability distribution; p[i0(u0)|i1(u1)]
is the prior probability distribution; and the other terms in the right-hand side except for
the constant constitute the likelihood part. Looking at Equation (4) – the special stationary
case of MCRFs – one can find it is similar: p[i0(u0)|i1(u1), . . . , im(um)] is still the poste-
rior probability distribution; p[i0(u0)] becomes the prior probability distribution; and the
other terms in the right-hand side except for the constant are the likelihood part. Similarly,
Equations (6) and (7) – the simplified general solution of MCRFs and its special case
– are also in accordance with the Bayesian inference formulation. Therefore, a MCRF
model also can be explained from the viewpoint of Bayesian inference: A spatial Markov
chain moves or jumps in a space and at any uninformed location its probability distribu-
tion is decided by its state at its last stay location and the new evidence (i.e., nearest data)
around the current uninformed location. If no nearest data is available other than its last
stay location, its probability distribution at the current location is solely decided by the
state at its last stay location, that is, a transition probability vector from the last stay loca-
tion (with informed state) to the current location (with uninformed state), which is the prior
probability distribution; but if nearest data around the current location (other than the last
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stay location) is available as new evidence, its probability distribution at the current loca-
tion will become the updated form of the prior probability distribution based on the new
evidence through likelihood functions.

It is possible that some MCRF or MCRF-based models are in accordance with the
maximum entropy principle, of course, subject to the constraints of the specific models.
However, even with this it is still not proper to say MCRF models to be simplified forms
of the BME model proposed by Bogaert (2002), because (i) they came from different ideas
and (ii) the basic characteristics of MCRFs – the single-chain property, the Markov prop-
erty, and the directional interactions through transition probabilities – are not the basic
characteristics of that BME model. The conditional independence assumption, which was
used to simplify the MCRF full solution, was also not used in that BME model.

5. Final remarks

When we began to explore how to use a two-dimensional Markov chain model to simulate
the spatial distributions of soil types and layers more than a decade ago, we did not have
much knowledge in spatial statistics. In order to solve the problems encountered in two-
dimensional Markov chain conditional simulation of categorical spatial variables, we spent
many years to learn related knowledge and investigate earlier literature in Markov chain
modeling in geosciences and in Markov random field (particularly Markov mesh) simu-
lations in image analysis and processing. The nonlinear multidimensional Markov chain
simulation approach for categorical spatial variables has been evolving almost in parallel
with the multiple-point geostatistics and the BME method for categorical spatial variables.
Although the initial ideas and justifications may be different, these three different non-
kriging nonlinear geostatistical approaches actually share some similar purposes and have
overlapped or probably will overlap their functions in some respects with the growth and
extension of each. Thus, it should be normal that one may find some plausible similarities
among them and some connections with other methods for categorical spatial variables
such as indicator kriging and Markov random fields. Many statistical or probability mod-
els, whether they are spatial or not, often turn out to have some relations with each other
even if they were developed separately, due to the explicit or implicit common assumptions
and principles followed intentionally or accidentally. MCRF models were found to be acci-
dentally in accordance with the Bayesian inference formulation after the MCRF approach
was proposed. Alternative methods should be able to coexist. We should have an objective
attitude to treat different approaches and their possible connections.

Christakos (1990, 2000) suggested the BME framework (or paradigm) for geostatis-
tical modeling and provided example models for modeling continuous variables. Under
this framework, Bogaert (2002) proposed a spatial model for modeling categorical spa-
tial variables by following the maximum entropy principle and it was also named as BME
model. Kriging variants were sometimes also regarded as Bayesian models or special cases
of BME. We recognized all of those well-established geostatistical models or frameworks
in our publications and also recognized those pioneer studies related to our Markov chain
method even if their models were not practical or were rarely used. It was widely known in
geosciences that simulating Markov chains in two or three dimensions was very difficult.
However, multidimensional Markov chain modeling has its long root in geosciences. The
MCRF approach is essentially in alignment with those early two- or three-dimensional
Markov chain models in geosciences, which mainly include the models of Krumbein
(1968), Lin and Harbaugh (1984), Lou (1993, 1996), and Elfeki and Dekking (2001). Carle
and Fogg (1996, 1997) are related to this line but their simulation method is essentially an
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extension of indicator kriging. The evolution processes along this line are from multiple-
chain models to single-chain models, from linear models to nonlinear models, and from
unconditional simulation models to conditional simulation models. This sounds lowborn
due to the theoretical flaws of some intermediate models, but it is very reasonable for us
when we started this research topic from soil-type simulation more than 10 years ago (i.e.,
1998). However, in order to solve problems and seek theoretical supports, we have to turn
to Markov random fields. Therefore, the MCRF approach is closely related to Markov ran-
dom fields (mainly Markov meshes), which were regarded as the natural multi-dimensional
extension of one-dimensional Markov chains in statistics. Of course, the MCRF approach
is also connected with classical geostatistics. We think the MCRF approach represents a
jump both in multidimensional Markov chain models and in practicality because of the
unique single-chain Markov random field idea and the support of existing Markov random
field theories.

The basic framework of MCG was presented with some implementation methods in
recent years, but development was very limited. Extension toward spatiotemporal models
with data and knowledge from diverse sources should be on the way. However, considering
our difficult situations in these years, we know what we can do is very limited in developing
the MCRF approach or MCG. Other researchers are welcome to join in its development or
adopt the features of this approach for their purposes, and we also welcome statisticians and
mathematicians to provide a rigorous treatment to the MCRF idea if they have the interest.
Nowadays in an era of internet, one may easily look across the field of ‘geostatistics’ to see
more similar ideas in other disciplines, including those researches conducted very early.
However, finding some plausible connections or similarities in some aspects of an existing
geostatistical approach with other statistical approaches or principles should not be a reason
to doubt the originality of the existing approach or deny its contributions, let alone with
wrong equation citations and misinterpretations in disregard of the contents of the core
papers establishing the approach. It is obvious that the MCRF approach has contributed to
geostatistics and inspired some related researches in categorical spatial variable modeling.
Even if the MCRF geostatistical approach were adapted from an existing non-geostatistical
method, that still would have erected a new geostatistical approach and made a contribution
to geostatistics. The facts are that the single-chain feature and the general solution forms
of MCRFs are unique, and no similar geostatistical methods existed before ours.
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