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Glossary
Algorithm A step-by-step problem-solving procedure,

especially, an established, recursive, computational

procedure for solving a problem.

Correlation Statistical techniques or measures which

show whether, and how strongly, pairs of variables are

related.

Geostatistics A collection of statistical methods which

were traditionally used in geosciences, describing

spatial correlation among sample data and using it in

various types of spatial models.

Markov Chain Random Field A single Markov chain

that moves or jumps in a space and at any location,

interacts with its nearest known neighbors in different

directions, and decides its state by the interactions.

Nearest Known Neighbor A location with known

value which is the nearest along one direction to the

location to be estimated and which may be a sampled

location or a previously estimated location.

Nonlinear Property of a kind of system whose

behavior is not expressible as a sum of the behaviors of

its descriptors.

Range The distance in which the difference of the

variogram or transiogram from the sill gets neglectable.

Simulation An imitation of some real thing or process,

which generally entails representing certain key

characteristics or behaviors of a selected physical or

abstract system.

Sill The limit of the variogram or transiogram tending

to infinite lag distances.

Transiogram It refers to a transition probability

diagram. Theoretically, it is defined as a two-point

conditional probability function pij (h) over the distance

lag h.

Introduction

Probabilistic models are appropriate in human geography
for obvious reasons: geographical concepts and mea-
surements tend to be inexact, geographical relationships
are often complicated and poorly understood, and geo-
graphical manifestations of human behavior remain un-
predictable despite much research. It is convenient to
treat the processes of changes as random in aggregate and
to describe them in a form of some stochastic process
describing the changes in the locational pattern. The
Markov chain theory is the simplest process of this kind.

Since Brown’s analysis of innovation diffusion in 1963,
Markov chains entered the geographical literature. Then
one-dimensional Markov chains became popular tools
in the late 1960s and early 1970s in human geography
for describing and modeling social mobility, such as
migration, city growth, and changes in population
distribution, residential structure, transport networks,
industrial structure and pattern, and land use. Collins et

al. provided a review on applications of Markov models
in geography in 1974. However, the applications of
Markov chains in human geography faded relatively since
the late 1970s. The main reason may be related with the
limitations of one-dimensional first-order stationary
Markov chains and the difficulties in constructing high-
order or multidimensional Markov chain models.

Recently, a Markov chain random field (MCRF) theory
was suggested. This new Markov chain theory extended a
single Markov chain for multidimensional modeling. The
measure for MCRFs is called ‘transiogram’ (i.e., transition
probability diagram), rather than the conventionally used
‘transition probability matrix’ (TPM). Transiogram solves
the major technical problem in estimation of transition
probabilities in many geographical applications of Markov
models. It overcomes the limitation of TPM that it can
only be used to provide estimates for time periods equal to
the time interval of the input time series data or lag dis-
tances equal to the sampling interval of the input spatial
data. For example, a 1981–85 land-use change matrix can
only provide quinquennial estimates. However, transio-
gram provides a way for estimating continuous transition
probabilities (with any time or space separation) from
samples. Transiogram also provides a visual spatial rela-
tionship measure for categorical data.

One-Dimensional Markov Chains

A Markov chain represents a sequence of random vari-
ables X1, X2, X3, y with the Markov property. The
Markov property means that given the present state, the
future state is independent of past states. Here a ‘state’
refers to a category defined by users, such as a type of
land use or a status (e.g., move, stay) of a resident. For a
first-order Markov chain, we have

PrðXnþ1 ¼ xjXn ¼ xn;y;X1 ¼ x1Þ
¼ PrðXnþ1 ¼ xjXn ¼ xnÞ ½1�

The possible values of Xi form a finite set of states S,
called the state space of the chain. The description tool of
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a Markov chain is its TPM. For a stationary Markov
chain, its TPM does not change with time (or space).
Below is a TPM of a discrete-time (or space), two-state
stationary first-order Markov chain defined on the state
space S¼ (1, 2):

P ¼
p11 p12

p21 p22

" #
¼

0:7 0:3

0:4 0:6

" #
½2�

This means that if the present state of the Markov chain
is 1, it will have a probability of 0.7 moving to the same
state (i.e., state 1) and a probability of 0.3 moving to state
2 at the next time (or space) step. If the present state of
the Markov chain is 2, it will have a probability of 0.6
moving to the same state and a probabilty of 0.4 moving
to state 1 at the next time (or space) step.

Stationary Markov chains have a property – after
sufficient transition steps, their transition probabilities
reach an unchangeable state and the different rows be-
come the same. Such a row of transition probabilities
is called an equilibrium vector, where each element wi

represents the ‘proportion’ of the corresponding state i.
The equilibrium vector can be obtained by multiplying
the TPM with itself sufficient times until the resultant
TPM has no changes in its element values.

The above TPM in eqn. [2] has diagonal entries (i.e.,
p11 and p22), which means the Markov chain may move
from a state to the same state (i.e., self-transition). If the
self-transition probability of a Markov chain on state i is
pii, the probability that the number of consecutive self-
transitions of the Markov chain on state i is k, which
obeys the geometric distribution

PðTi ¼ kÞ ¼ yið1� yiÞk�1; k ¼ 1; 2;y ½3�

where yi¼ (1� pii). The geometric distribution is a dis-
crete analog of an exponential distribution. When using
such a Markov chain model to simulate the spatial se-
quence of a phenomenon, the sequences of states, such as
AAABBBBAABBBBBy, are generated, and the numbers of
consecutive self-transitions of a state such as B obey the
geometric distribution.

The number of self-transitions on a state represents
the ‘wait’ time (or distance) of the Markov chain on the
state. For studying land-use change, this ‘wait’ time refers
to the time (e.g., years) of the land to be continuously
used in one way (e.g., cropping). In many cases, ‘wait’
time may not follow a geometric distribution. Thus,
the above Markov chain model may not be suitable for
all cases. An appropriate Markov chain model for cases
where the geometric distribution cannot be applied may
be an embedded Markov chain, which considers only
transitions between different states in its TPM and deals
with ‘wait’ time in a user-defined way.

For a three-state, stationary, embedded Markov chain,
its TPM can be expressed as

Q ¼
� q12 q13

q21 � q23

q31 q32 �

2
64

3
75 ½4�

In the above TPM, only transitions between different
states are counted and self-transitions are ignored. When
using such a Markov chain model to simulate the spatial
sequence of a phenomenon, only the sequences of dif-
ferent states, such as ABCBACBACAy, are generated. To
describe the ‘wait’ time of each state, an appropriate
probability distribution chosen by users, such as a log-
normal distribution, may be used. We found no literature
in human geography that used the embedded Markov
chain approach. But such a method may find its useful-
ness in the future because ‘wait’ time in some phenomena
in human geography may not fit a geometric or ex-
ponential distribution.

Transiograms

A transiogram refers to a transition probability diagram
(a curve or a series of points, of transition probabilities
with increasing separate distance) for characterizing the
autocorrelation of a class (or state or category) or the
cross-correlation from a class to another class. Limi-
tations in data collection make it impossible to estimate a
continuous measure directly from sparse sample data.
Transiogram overcomes the data limitation and can be
used to detect and model spatial autocorrelation or cross-
correlation at different scales from sample data through
inferring transition probability models. A transiogram
can be represented as a transition (or conditional)
probability function on a continuous lag h :

pij ðhÞ ¼ Pr zðxþ hÞ ¼ j jzðxÞ ¼ ið Þ ½5�

where z is a reliazation of the random z at a specific
location x. Here Z may be one-dimensional or multi-
dimensional. The second order stationarity assumption is
applicable here so that pij(h) is dependent only on the lag
h, not on the location x. An auto-transiogram pij(h)
represents the self-dependence (i.e., auto-correlation) of
a single class i and a cross-transiogram pij(h) (iaj) rep-
resents the cross-dependence of class j on class i. Here
class i is called a head class and class j is called a tail
classes. i and j are not interchangeable here because
cross-transiogram is normally asymmetric.

Transiograms directly estimated from sample data are
called ‘experimental transiograms’. Continuous transio-
gram models can be acquired by using mathematical
models to fit experimental transiograms. Basic math-
ematical models for modeling experimental transiograms
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include the exponential model and the spherical model.
Expert knowledge may be incorporated in the estimation
of transiogram models. Here expert knowledge refers to
the knowledge of experts in parameter estimation of
transiogram models, which typically include sills, ranges,
and model types (e.g., exponential, spherical). Figure 1
shows that an experimental autotransiogram and an ex-
perimental cross-transiogram are approximately fitted by
basic mathematical models. Here, the sill of a transiogram
refers to the stable height that the transiogram gradually
approaches. Theoretically, the sill of a transiogram should
be equal to the proportion of the corresponding tail class.
The range of a transiogram refers to the lag distance
where the transiogram approaches the sill. When the
separate distance between two data is less than the range,
they are considered spatially dependent (or correlated);
otherwise, they may be considered independent.

Transiograms have several uses. One use is to estimate
transition probabilities, particularly multistep transition
probabilities, from insufficient data. When data are in-
sufficient, transition probabilities estimated from data are
inaccurate. Under this situation, reasonable transition
probabilities can be obtained by using mathematical
models to fit experimental transiograms; thus character-
istics of a large set of geographic data (e.g., population)
can be inferred using a small sample set. For example, the
racial migration probabilities in a large city may be in-
ferred from a small sample set by using transiograms.

The second use is to get continuous-lag transition
probabilities from sample data through modeling. Usu-
ally sample data can only provide us transition prob-
abilities with one or several specific lags (e.g., one-step or
n-step transition probabilities), which is a severe limi-
tation when transition probabilities at other lags are
needed. The third use of transiograms is to characterize
spatial (or temporal) heterogeneity of discrete variables.
Correlation ranges and sills of transiograms and tran-
siogram shapes are all reflections of spatial heterogeneity.
In addition, class polygon size (mean length) may also be
inferred from autotransiograms. Thus, transiogram may
be used to infer polygon sizes of different land-use classes
(e.g., residential, commercial, industry, park, and agri-
culture) or different urban planning district sizes with
certain residential characteristics (low, medium, and high
density). The fourth use of transiograms is to provide
input transition probabilities to Markov chain simulation.
Transiogram models can provide transition probabilities
with any lag distance. The fifth use of transiograms is for
data mining in large datasets. Through estimating tran-
siograms from a large dataset of a categorical variable,
one may find autocorrelation properties of single classes
and complex relationships between different classes hid
in the dataset. Thus, it may be used to determine if the
magnitude or frequency level of some phenomena differ
from one location to another. Therefore, it is expected
that transiograms will be a useful spatial statistical tool in
human geography to make generalizations concerning
complex spatial patterns for studies of diseases, urban
growth, land-use change, residential mobility, socio-
spatial segregation, and vehicle traffic, etc.

Markov Chain Random Fields

The MCRF theory extends a single Markov chain for any
dimensional modeling. The general solution of the con-
ditional probability distribution of a MCRF Z at an
unsampled location x was derived as

Pr z xð Þ ¼ kjz x1ð Þ ¼ l1;y; z xmð Þ ¼ lmð Þ

¼
Q

m
i¼2 pkli hið Þ � pl1k h1ð ÞPn

f ¼1

Q
m
i¼2 pfli hið Þ � pl1 f h1ð Þ

� � ½6�

where pkli hið Þ represents a transition probability in the ith
direction from state k to state li with a lag hi; x1 repre-
sents the neighbor from which the Markov chain moves
to the current location x; m represents the number of
nearest known neighbors (or locations); k, li, and f rep-
resent states in the state space S¼ (1, y, n); hi is the
distance from the current location to its nearest known
neighbor xi. With increasing lag h, any pkl(h) forms a
transiogram which represents spatial (auto or cross)
correlation of classes. It can be seen that the conditional
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Figure 1 Transiogram modeling by mathematical models: (a)

autotransiogram, (b) cross-transiogram. The scales along h axis

are number of pixels.
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probability distribution equation of the MCRF is actually
composed of transiograms. With changes of the number
m and the directions of nearest known neighbors, the
above general solution actually includes a set of different
MCRF models for one-dimensional and multidimen-
sional modeling. It is clear that MCRF models are
nonlinear.

In practical use, however, the above general solution
cannot be simply implemented directly, because it is
necessary to consider a limited number of nearest known
neighbors and the conditional independence of nearest
known neighbors in cardinal directions for optimal
simulations. Normally, considering four orthogonal car-
dinal directions is sufficient for two-dimensional mod-
eling. So if only the nearest data locations in four cardinal
directions are considered, the MCRF model in eqn. [6] is
simplified as

Pr z xð Þ ¼ kjz x1ð Þ ¼ l ; z x2ð Þ ¼ m; z x3ð Þ ¼ q; z x4ð Þ ¼ oð Þ

¼ pko h4ð Þ � pkq h3ð Þ � pkm h2ð Þ � plk h1ð ÞPn
j¼1 pfo h4ð Þ � pfq h3ð Þ � pfm h2ð Þ � plf h1ð Þ
� � ½7�

where 1, 2, 3, and 4 represent the four cardinal directions
considered. In directions 2, 3, and 4, transitions are from
the current unknown location x to its nearest known
neighbors, but in direction 1 (i.e., the coming direction of
the Markov chain), the transition is from the nearest
known neighbor x1 to the current location x.

In simulation, a cardinal direction is replaced by a
search sector to cover the whole search area (usually a
circle) (Figure 2). Thus, four search sectors that equally
split a search circle may be used to search for the nearest
known neighbors, one from each search sector, for esti-
mating the conditional probability distribution of a
random variable at an unsampled location. In addition,
because the nearest known neighbors found within a
search radius may not always reach four, the needed
MCRF models may be further simplified from eqn. [7]. A
Markov chain sequential simulation algorithm can be
used to conduct simulation.

Figure 3 shows simulated results of seven land-cover
classes using a random path sequential simulation algo-
rithm. The simulation was conditioned on a random
sample set of 130 point data in a 35 km2 area (a 295
by 295 lattice). Apparently, the patterns in simulated
realizations are polygonal. Polygonal patterns are in
accordance with the custom of area-class mapping and
are also convenient for human understanding and data
processing using GIS tools. Different realizations are
imitative of each other but with apparent differences in
details, which demonstrates the different possible con-
figurations of the land-cover classes in reality. The op-
timal map based on maximum occurrence probabilities
represents the best estimate based on samples. When
samples are very sparse or simulation is unconditional,
sills of transiogram models will have strong influence on
the proportions of classes in simulated results. But
with the number of conditioning samples increasing, the
proportions of classes in the conditioning sample set
will play a major role in determining simulated class
proportions.

Although single realizations can represent spatial
uncertainty by their differences in spatial distribution of
classes, a more accurate and vivid way to quantify and
demonstrate spatial uncertainty is using occurrence
probability maps, which can be estimated from a large
number of realizations or directly calculated. As shown in
Figure 4, the maximum occurrence probability map
represents the purity (or quality) of the optimal map, and
occurrence probability maps of single classes represent
uncertainty of spatial distribution of each class. In the
maximum occurrence probability map, the white–gray
stripes actually indicate the approximate location of class
boundaries, which are called ‘transition zones’.

MCRF models have been used to model categorical
geographical variables and may also be extended to model
continuous geographical variables. It is expected that
MCRF models will be useful in varied branches of human
geography, particularly those involving the spread of
disease (epidemiology), the practice of commerce plan-
ning, and exploration of traffic patterns in an urban core.
However, how to use them and exactly where to use them
are issues for human geographers to explore. For example,
if one wants to map the spatial distribution of apartment
rents or land prices in a city from a sample dataset, one
may consider using two-dimensional MCRF models.

Issues

One-dimensional Markov chains have been used for
decades in human geography and were proved useful in
describing and modeling geographical phenomena and
processes, such as patterns of human migration, repro-
ductive behavior, and intergenerational occupational

Figure 2 The searching sectors and neighborhood used in the

random-path Markov chain sequential simulation algorithm.
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Figure 3 Simulated results using a random-path Markov chain geostatistical algorithm, conditioned on a random sample set of 130

points: (a) samples; (b) optimal map; (c) and (d) realizations.
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Figure 4 Occurrence probability maps generated using a random-path Markov chain geostatistical algorithm, conditioned on a

random sample set of 130 points (correspond to Figure 3): (a) maximum occurrence probability map; (b), (c), and (d) occurrence

probability maps of classes 7, 4, and 2, respectively.
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mobility. However, it is still difficult to build high-order
Markov chain models to deal with the complex property
of social phenomena or processes.

Transiogram provides a way for estimating continuous
transition probabilities from sparse samples and expert
knowledge and for spatial heterogeneity characterization
of categories. Considering the previous applications of
TPM in human geography and the advantages of tran-
siogram over TPM, it is expected that transiogram will
also be a useful tool in human geography for measuring
spatiotemporal changes. However, transiogram is just a
two-point spatial measure. For measuring complex geo-
graphical phenomena and processes, it is obvious that
multipoint statistics are needed.

There is a need for methods of analyzing large-scale
spatiotemporal dependence in geographical studies be-
cause strong spatiotemporal dependence or autocorrela-
tion exists in areally distributed variables. Because MCRF
theory extended a single Markov chain for multidimen-
sional simulation, it should be useful in dealing with
multidimensional human geographical phenomena and
processes, such as describing and predicting changes in
land use, population distribution, residential structure,
transport networks, and industrial structure and pattern.
While many geographical phenomena and processes in-
volve both spatial and temporal dependences, integrating
the time dimension and space dimensions into the same
MCRF model will be desirable.

See also: First Law of Geography; Kriging and Variogram

Models; Monte Carlo Simulation; Simulation; Spatial

Interpolation; Uncertainty.
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