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In our comment letter (Li and Zhang 2012) on Cao et al. (2011), we focused on clarifying their

misunderstandings to the Markov chain random field (MCRF) approach (Li 2007). So we did not talk
about the Tau model implementation method proposed by them. In their response letter to our comments,
Cao et al. (2012) first claimed their method and results were sound and their conclusions were valid, then
accused the MCRF approach, and finally stated that “By adopting the general Tau model in a spatial
context, Cao et al. (2011) proposed a method to relax the assumption of conditional independence in the
spatial prediction and simulation of categorical fields. From this point of view, Cao et al. (2011) actually
contributed to the continuing advancement of MCRFs framework and Markov chain geostatistics”. Here
we would like to point out that it is not proper to claim their method to be contributive to the continuing

advancement of MCRFs framework and Markov chain geostatistics.

The Tau model implementation method

Cao et al. (2011) described their Tau model and simulation algorithm as follows:

The assumption of permanence of ratios is another way to approximate the conditional

probability of Equation (5). To condense notation, we use A and Dy, . . ., Dy to represent the
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The idea behind this assumption is that ratios of information increments are typically more
stable than increments themselves. Compared to the assumption of conditional indepen-
dence, this assumption avoids the calculation of the marginal probability in Bayesian
expansion (denominator of Equation (5)). Actually, in practice, the summation in the
denominator of Equations (7) and (8) does not necessarily equal the marginal proba-
bility. It can be easily demonstrated that Equation (9) implies conditional independence
(Equation (6)) but the reverse is not necessarily true.



This approximation actually also assumes a certain form of independence between D
and D;. To relax this assumption, Journel (2002) introduced an exponent factor, 7, to
Equation (9) to account for information redundancy between D; and D;.
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Equation (10) can be generalized to N data events (Journel 2002, Krishnan 2008). Denoting
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The main problem with this model is the determination of the exponent factor t,, which
actually quantifies the information redundancy between D, and D, | (Krishnan 2008).
Recently, Chugunova and Hu (2008) showed that the Tau model with constant weights is
inapplicable in some cases and suggested the necessity of inference of t, in each case and
at each simulation point.

In this article, the following procedure is applied to obtain t,,. First the nearest neighbor
x of the target location xy is selected and we let T, = 1. Then we assume the value ¢(x,) of
this selected location x; is unknown and perform ordinary kriging (OK) to estimate it using
the remaining neighbors as known data taking the OK weights as t,, n = 1. Equation (11)

can be reformulated as
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where t,,n = 2,. .., N, are the OK weights.

This procedure can be interpreted using consensus theory (Benediktsson and Swain 1992)
as follows: First, the nearest neighbor x, of the unknown event location x; is selected and
its “opinion” on what the unknown event should be is assumed completely credible. Then
the degree of agreement between the remaining N — 1 neighbors and the first selected
nearest neighbor x| is quantified. The more the class label (or attribute value in general)
at x, agree with that at x,, the larger the OK weights for x,, will be; this implies more
redundant information between states at x,, and x,, and thus the ‘opinion’ of x, should
be suppressed. In kriging, all those weights depend (through the variogram model) on the
distances between the sample data locations. For example, if the distance between x,, and
Xy is much larger than the variogram range, the OK weight for x,, is 0, that is, t,, = 0, and

its corresponding component in Equation (11) is (:.—f)rﬂ = 1; this means that the observed
state at location x,, has no influence on the unknown state at location xy. On the other hand,
if the OK weight t,, = 1, (:—;)rﬂ = %, which means the ‘opinion’ of x,, is entirely credible.
A nonnegativity constraint is imposed on the OK weights (Deutsch 1996) to ensure each
T, € [0, 1] and the sum of these exponents is 1.



Rationality Analysis

We have no problem with the permanence of ratios and the Tau model suggested by Journel (2002),
although this model was not implemented for spatial data in his paper. The Tau model as an empirical
model may be a good idea. Here what we want to show is whether the Tau model implementation method
of Cao et al. (2011) is rational or not.
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We will illustrate their method in the
following Figure 2.

They stated that “In this article, the following procedure is applied to obtain 7 ». First the nearest
neighbor xi of the target location Xo is selected and we let t1 = 1. Then we assume the value c(x1) of this
selected location x; is unknown and perform ordinary kriging (OK) to estimate it using the remaining
neighbors as known data taking the OK weights as t, n > 1” (Cao et al. p. 1780). According to their
statements and explanations made above, they estimated the t parameters using the following procedure
as shown in Figure 2: (1) Assume an unknown state (class label) at location X, depending on its five
nearest neighboring states at locations xi, . . ., Xs. (2) Give x; the full credit, that is, allocate 1; = 1 to the
location xi. (3) Assume xi is unknown, and then estimate the value at x: using ordinary kriging from other
nearest neighbors, that is, X2, X3, X4, Xs. The kriging weights allocated to these data will serve as their t
parameters. (4) Finally obtain a set of T parameters for estimating the state at location Xo using the Tau
model.

(1) Fig. 2. llustration of the Tau model
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By this way, apparently the data close to x; will get larger weights, that is, x> and xs will get larger
weights, for example, 0.4, no matter what their class labels are. The data far from x; will get smaller
weights, that is, xz and x4 will get small weights, for example, 0.1. Then the five nearest neighbors xi, Xz,
X3, X4, Xs Will have weights (i.e., T parameters) of 1.0, 0.4, 0.1, 0.1, and 0.4, respectively. Now one can see
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that the ratio for the local conditional probability distribution at Xo mainly depends on the nearest
neighbors at one side and largely ignores those at the other side. The question here is: how can they know
the data with low Tau parameters are redundant and the data with high Tau parameters are not redundant?
This is apparently not reasonable. In fact, when they estimate the kriging weights for locations X2, X3, Xa,
Xs Using xi as the uninformed location, they should often get some negative weights because these data are
located only at one side of x;. Constraining negative weights will get some 0 weights, which are still
irrational. Even if they used the xo as the center to estimate weights for nearest data except for xi, the
method is still irrational, because there is no reason to give x; a large weight of 1.0 and give other
neighbors small weights. There is no reason to estimate the state at a location mainly based on one of its
nearest neighbors and regard others as redundant data.

Cao et al. (2011) spent a large volume of their paper to talk about other methods, especially non-
spatial methods. For example, the whole section of “Methods” was talking about other things. However,
they described the new method (i.e., the Tau model implementation algorithm) they proposed very simply
using only a few sentences in a subsection. Apparently from above analysis, one can see that the method
suggested by Cao et al. (2011) is not rational. Even if it was rational, their method is not a Markov chain
spatial model. Therefore, it is not proper to claim it is contributive to the continuing advancement of
MCRFs framework and Markov chain geostatistics. Considering that our concern was mainly about their
misunderstandings and misinterpretations to our research and that we mainly aimed to communicate with
them on Markov chain geostatistics, we did not mention this point in our previous comment letter. This
note provides a complement to our previous comment letter and their response letter.
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