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Letter to the Editor

Comments on ‘An efficient maximum
entropy approach for categorical vari-
able prediction’ by D. Allard, D. D’Or &
R. Froidevaux

Recently, Allard et al. (2011) published an interesting paper in
which they proposed a Markov type Categorical Prediction (MCP)
approach for simulating categorical variables. They found that the
MCP solution might be regarded as an approximation to the full
BME (Bayesian Maximum Entropy) solution derived by Bogaert
(2002) and D’Or & Bogaert (2004). Then they suggested that
the MCP approach was a generalization of the Markov chain
random field (MCRF) approach, in other words, the Markov chain
geostatistics (MCG) proposed by Li (2007). However, contrary to
their understanding, we knew that the solution was just a special
case of the MCRF general solution when the MCRF general
solution was first obtained. In Allard et al. (2011) there are several
incorrect statements and citations referring to the MCRF theory by
Li (2007) and the MCRF sequential simulation algorithm by Li &
Zhang (2007), which can be misleading. The following comments
aim to clarify the misunderstandings.

Incorrect statements

Allard et al. (2011) state ‘More recently a Markov chain random
field approach was proposed by Li (2007) with applications to
the simulation of soil type spatial distribution (Li et al., 2004;
Li & Zhang, 2007) but the conditioning is limited to only four
neighbours organized in orthogonal directions. This algorithm
relies on a conditional independence assumption between two
Markov chains, but its optimality properties are not known’.
Later, they also state ‘For the estimation and simulation of
spatial categorical variables, Li (2007), Li et al. (2004) and Li
& Zhang (2007) proposed the combination of two orthogonal
one-dimensional Markov chains, P1 and P2, with a conditional
independence assumption between the two chains . . . .’.

These are misunderstandings of the MCRF theory and MCG.
To clarify these, we raise and answer some questions.

Is the MCRF approach composed of two Markov chains
or built on the coupled Markov chain model?

Li (2007) states ‘This paper proposes a single-chain based Markov
chain random field (MCRF) approach for building one to multi-D
Markov chain models for conditional simulation or interpolation’
and that ‘the suggested MCRF contains only one single Markov
chain’. This is repeated many times in this paper and Figure 1
in Li (2007) illustrated what a MCRF looks like in a space.

In addition, Li usually called the MCRF approach ‘Markov
chain geostatistics’ (MCG), which include different MCRF-based
algorithms, transiograms and the MCRF theory. However, Allard
et al. state that the MCRF algorithm ‘relies on a conditional
independence assumption between two Markov chains’ and that
Li and his co-authors ‘proposed the combination of two orthogonal
one-dimensional Markov chain P1 and P2, with a conditional
independence assumption between the two chains’.

Although the development of the MCRF theory and approach
started earlier than 2007, the paper of Li et al. (2004) was
definitely not a part of the MCRF approach. Their method was
built on the Coupled Markov Chain (CMC) model of Elfeki (1996)
and aimed to correct some of its deficiencies. Li (2007) and Li
& Zhang (2008) described the evolution of their research from
coupled Markov chains to a single chain. However, Allard et al.
considered Li (2007), Li et al. (2004) and Li & Zhang (2007)
together and came to a wrong conclusion.

The proposition for the use of the MCRF theory and MCG
resulted from research on Markov chain modelling of soil
categories by Li and his colleagues using the CMC model
proposed by Elfeki (1996) as a starting point. That is because
earlier postdoctoral research by Li applied the CMC model to the
simulation of categorical soil variables and found that the model
had some apparent deficiencies. The MCRF idea resulted from
the process of first attempting to correct the deficiencies of the
CMC model and then seeking a new way to build theoretically
sound multi-dimensional Markov chain models; however, it was
thoroughly different from the CMC model.

The CMC model of Elfeki (1996) comprised a pair of
independent Markov chains, but there was no conditional
independent assumption within it. To couple the two Markov
chains, Elfeki (1996) assumed them to be (absolutely) independent
and excluded unwanted transitions, which were explained and
demonstrated in Elfeki & Dekking (2001) as noted by Li (2007).
Li (2007) pointed out the deficiencies of the CMC model, and
also demonstrated the problem of minor class under-estimation
in simulated realizations (actually in local conditional probability
distribution estimation), which was difficult to solve within the
CMC framework. He then proposed an innovative single-chain
MCRF model, which, as a single Markov chain, does not need an
absolute independent assumption and also contains no unwanted
transitions.

The conditional independent assumption was used both in Li
(2007) and in Allard et al. (2011), but the purpose was not to
deal with two Markov chains. On the contrary, it was used
to simplify the solutions so that they were computable. In the
publications of Li and his colleagues, two Markov chains and
the conditional independence assumption did not co-exist in one
model.
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Is the MCRF approach equal to a simulation algorithm?

The MCRF theory essentially provides the foundation of MCG
and can support a variety of simulation algorithms. However,
Allard et al. (2011) note that the conditioning of the MCRF
approach ‘is limited to only four neighbours organized in orthog-
onal directions’.

The MCRF approach did not impose such a limitation on sim-
ulation algorithm design. Li (2007) not only provided a general
solution of MCRFs, but also pointed out that ‘Development of
practical simulation algorithms will be the key for making full use
of the MCRF theory’, that (i) ‘the so-called cardinal directions are
not limited to the exact four axial directions’; (ii) ‘It is important to
note that the objective of this paper is to define the theoretical basis
of the MCRF, not to provide practical implementation techniques.
Specific algorithms and implementations of MCRF-based Markov
chain models will be provided in future papers or depend on future
development of new algorithms’ and (iii) ‘With a conservative atti-
tude, it is suggested herein that if the nearest known neighbours
are generally located uniformly throughout the study space and a
random path is used in a simulation, inclusion of nearest known
neighbours in non-cardinal directions may be considered’. Li &
Zhang (2007) also pointed out that ‘In addition, the MCRF the-
ory is also flexible in cardinal directions; three or more than four
cardinal directions may be considered in algorithm design’.

In fact, multiple simulation algorithms have been suggested and
used for Markov chain modelling by Li et al., including two fixed-
path algorithms of the alternate advancing path and the middle
insertion path for dealing with regular or borehole sample data,
and one random-path algorithm, which used quadrant search for
dealing with sparse point sample data. Although these simulation
algorithms considered four cardinal directions or sectors, it does
not mean the MCRF approach cannot have other algorithms.

Why was a quadrant search algorithm suggested for MCRF
modelling?

It seems that Allard et al. were much influenced by using ‘four
neighbours organized in orthogonal directions’ in the MCRF
quadrant search algorithm and note that ‘its optimality properties
are not known’. Indeed, so far all simulation algorithms that
we have published consider only neighbours in four cardinal
directions or quadrants. However, these propositions were related
to the evolving process of the multi-dimensional Markov chain
simulation in geosciences and have rational backgrounds.

First, there is a historical reason. The CMC model, Lou’s (1996)
model and some Markov mesh models (Gray et al., 1994) all
considered only neighbours in orthogonal directions on a lattice
and used fixed paths. It is understandable that every scientific
technology has a step-by-step evolutionary process from initial
simple or even incorrect ideas, as demonstrated in our publications
on Markov chain modelling since 2004 and by others before 2004
in multi-dimensional Markov chain modelling in geology. Because
our research in two-dimensional Markov chain modelling started
from the attempt to correct the deficiencies of the CMC model, we

had to solve related problems one by one. That is why we first used
fixed path algorithms and then developed a random path algorithm.

A second reason is because Li (2007) found that nearest neigh-
bours in cardinal directions could be regarded as conditionally
independent in a sparse data space on the basis of the theorem
of Pickard (1980). With such a theoretical support, considering
neighbours in four cardinal directions in an algorithm (by assum-
ing a rectangle lattice) may be a good choice in algorithm design.
However, Li (2007) did not constrain the algorithm design to four
neighbours in four orthogonal directions, as explained above.

Third, it is a practical algorithm, although we have not shown
any test on the optimality of the quadrant search random-path
MCRF sequential simulation algorithm in published papers so far.
However, except for the above second reason, quadrant search also
represents a de-clustering method. Quadrant search in the random
path MCRF simulation algorithm also had a data de-clustering
purpose. Choice of a number of neighbours in a neighbourhood
without the consideration of directions was tested in unpublished
MCRF simulations years ago, but was discarded because it was
inferior. Allard et al. (2011) also note that it was very easy to
code such an algorithm by using their MCP solution.

It seems that Allard et al. have ignored the facts that the tests in
D’Or & Bogaert (2004) (Figure 5 in their paper) and in Brus et al.
(2008) (Figure 3 in their paper) in the BME modelling of categor-
ical soil variables both showed that considering four data in the
neighbourhood could be a good choice. Brus et al. (2008) actually
chose the neighbourhood size of four in their simulation algorithm.

Incorrect equation citation

Allard et al. (2011) also note ‘the prediction equation obtained by
Li (2007, equation 12)’ as
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and state that ‘where P di (.) is obtained from transition proba-
bilities of one of the two Markov chains, depending upon their
directions’.

There is no such equation in Li (2007) (or in any other paper).
Equation (12) in Li (2007) which is the simplified general solution
of MCRFs, and copied here as:
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=
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This general solution is based on a single spatial Markov chain,
irrelevant to two or coupled Markov chains. It does not determine
the number of nearest neighbours, nor provide a direction on the
spatial Markov chain. Because the MCRF theory assumes that a
spatial Markov chain may move or jump to any place in a space
randomly or along prescribed paths, it is impossible that the gen-
eral solution (that is, the general form of the local conditional
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probability distribution) has a direction of LZ. Note that this gen-
eral solution is a directly computable form, simplified using the
conditional independence assumption. The full solution of MCRFs
involves complex multiple-point statistics and is not directly com-
putable based on sample data.

The notations used in Equation (2) may not be perfect, because
a specific superscript notation for directions of transition probabil-
ities was not necessary. Because of this, the superscript notation
for directions was deleted in MCRF models (Li et al., 2010) and
in Li & Zhang (2011) the general solution was written as

Pr(z(u) = k|z(u1) = l1, · · · , z(um) = lm)

= pl1k(h1)
∏m

g=2 pklg (hg)
∑n

f =1

[
pl1f (h1)

∏m
g=2 pf lg (hg)

] . (3)

However, the meaning is the same, because hg is a vector with a
direction denoted by g.

Incorrect judgement

Allard et al. (2011) state ‘We also show that the Markov Chain
Random Field (Li, 2007) is a special case of our general result . . .’.
They note that ‘Replacing P d

i0|i1(h1) by P d
i1|i0(h1)pi0/pi1 yields,

after simplification bypi1 , to an equation formally similar to the
prediction equation (7)’. However, things are not so simple. If
the MCRF general solution was really composed of two Markov
chains, such a replacement could not do this. If the MCRF general
solution was correctly written as the present Equation (2) or (3),
replacing pi0|i1(h10) with pi1|i0(h01)pi0/pi1 would result in an
equation that is the same as, rather than formally similar to, the
prediction equation (7) in Allard et al. (2011). However, to make
such a replacement one needs to first make some assumptions.

Allard et al. (2011) further state that ‘Our method is thus a
generalization of the Markov chain random field approach, allow-
ing us to consider as many neighbours in as many directions
as desired’. Such a judgement, plus the wrong equation cita-
tion, denied the generality of the MCRF theory and played down
the MCRF approach. Because Allard et al. had claimed that the
MCP solution was an approximation to the full BME solution, the
MCRF approach thus became a special case of an approximation
of the BME approach for categorical variables. We think that this
is not true.

First we check the solutions, the general models, to see whether
or not the MCP method is a generalization of the MCRF approach.
For a clear comparison, here we use the notation style of Allard
et al. (2011) and use ‘two-point conditional probability’ (called
‘directional bivariate probability function’ by Allard et al.) to refer
to transition probability or transiograms because they did not use
the term of transition probability.

The MCP solution (Allard et al., 2011, equation (7)) is copied
here as

p∗
i0|i1,...,in

= pi0

∏n
k=1 pik |i0(h0k)

∑I
i0=1 pi0

∏n
k=1 pik |i0(h0k)

. (4)

We show only the conditional probability form because it is
directly related to the MCRF general solution and it was also
the form used in simulation by Allard et al. (2011). We can easily
derive such a solution by first applying the definition of con-
ditional probability, and then using the law of total probability
to the denominator and applying the conditional independence
assumption.

The MCRF general solution provided in Li (2007) has been
given here earlier (Equation (2) or (3)). Using the notation style
of Allard et al. (2011), the MCRF general solution can be
rewritten as

p∗
i0|i1,...,in

= pi0|i1(h10)
∏n

k=2 pik |i0(h0k)
∑I

i0=1 pi0|i1(h10)
∏n

k=2 pik |i0(h0k)
. (5)

The key to obtaining this solution is to factorize the last joint
probability term as pi0,i1 = pi0|i1pi1 rather than pi0,i1 = pi1|i0pi0 ,
as explained in Li (2007).

Then what is the difference between the MCP solution and
the MCRF solution? Equation (5) does not have the class mean
value term pi0 (the mean proportions of classes or marginal
probabilities), but one of its two-point conditional probabilities
has a different head-tail direction. However, Equation (4) has
the class mean value term. This means that Equation (5) can
have varying class mean values, but Equation (4) needs the mean
values of all classes for estimating the local conditional probability
distribution at any uninformed location. It is true that Equation (5)
can be converted into Equation (4) by replacing pi0|i1(h10) with
pi1|i0(h01)pi0/pi1 . However, to do so one has to first assume the
existence of stationary class mean values and the symmetry of
two-point conditional probabilities. The latter does not hold for
uni-directionally estimated two-point conditional probabilities. In
fact, pi0|i1(h10) = pi1|i0(h01)pi0/pi1 only approximately holds in
real data for omni-directionally estimated two-point conditional
probabilities. This means that Equation (4) (the MCP solution) is
a special case of Equation (5) (the MCRF general solution).

The general solution of MCRFs (Equation (5)) is completely
explained by the MCRF theory. In the MCRF quadrant search
simulation algorithm, it is always assumed that one neighbour
within the neighbourhood serves as the last stay location of the
spatial Markov chain. Equation (4) also can be simply explained
by the MCRF theory. By assuming the existence of stationary
class mean values and that the last stay location of the spa-
tial Markov chain in a MCRF is always outside the neighbour-
hood (or correlation range), we have pi0|i1(h10) ≈ pi0 because of
limh10→∞ pi0|i1(h10) = pi0 , a basic property of first-order station-
ary Markov chains. That is, the transition probability pi0|i1(h10)

from the last stay location to the current location to be estimated
will decay to its limit (the class mean value pi0) when the lag is
sufficiently large. Equation (5) will directly become Equation (4)
(note that i1 is thus excluded from the neighbourhood because
it is outside, and the neighbourhood size becomes n–1, which
may still be denoted by n). In general, the last stay location of
the spatial Markov chain in a MCRF may have three situations:
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(i) always within the neighbourhood, (ii) always outside the neigh-
bourhood and (iii) unsure (that is, sometimes inside, sometimes
outside). The general solution of MCRFs (Equation (5)) covers
all the three situations but Equation (4) covers only the second
situation approximately. Again, Equation (4) is a special case of
Equation (5). However, Allard et al. (2011) mistakenly thought
the MCP approach was a generalization of the MCRF approach.

While it is easy to derive, Li (2007) did not provide the
solution of Equation (4) because it is an inferior special case.
If we compare MCRFs to kriging (or, more precisely, indicator
kriging), Equation (5) might be regarded as the counterpart of
ordinary kriging, but Equation (4) at best might be regarded as
the counterpart of simple kriging. What Li (2007) did provide is
the general computable form of Markov chain geostatistics, an
ordinary MCRF solution, rather than a special case.

Thus, both Equation (4) and Equation (5) were obtained as
solutions of MCRFs. The major idea of the MCRF theory that a
single spatial Markov chain moves or jumps in a space and decides
its state at any location by interactions with its nearest neighbours
in different directions is perfectly explained by Equation (5).
However, Equation (4) is just a special case of Equation (5) by
assuming the existence of stationary class mean values, the last
stay location of the spatial Markov chain always to be outside
the range and the transition probability decays to the tail class
mean value, or outside the neighbourhood where its influence is
screened and thus decays to the tail class mean value. Therefore,
Equation (4) was not regarded as a general solution. While simple
kriging is useful in geostatistics to deal with stationary continuous
variables such as residuals, there are no residuals to deal with in
categorical variables. Because Equation (4) was much less useful
than Equation (5) and was also included in Equation (5), it was
therefore discarded.

In addition to the implied assumptions by Allard et al.
(2011), the MCP method did not consider data configuration
(or data clustering effect) in its algorithm for conditional
simulation. We found such an algorithm was inferior and discarded
it, as mentioned above. Allard et al. (2011) showed some
unconditionally simulated realizations as follows: ‘The simulation
followed a classical sequential process, except that the random
path was organized following a multi-grid with four levels. At the
first level, the grid was subsampled using an internode distance
equal to the basic internode distance multiplied by 24. The nodes
in this subsample were first simulated following a random path.
Then, the operation was repeated for lower levels using powers
from 3 to 1 to sample the grid. In this way, the random path
was partially organized by regularly spreading the first simulated
values. At each node of the grid, the neighbourhood consisted of
the eight closest previously simulated nodes’. At the first level,
they could not have sufficient simulated nodes or even might have
no simulated node in a neighbourhood to meet the required number
of eight neighbours. For other levels, the ‘eight closest previously
simulated nodes’ were actually located in eight directions
segmenting the search circle equally (except for boundary nodes).
Li (2007) stated that ‘If the neighbourhood is symmetric, we

can find a successful application example from Besag (1986) for
image processing, where eight adjacent neighbours of x were
all assumed conditionally independent. Ripley (1990) suggested
that in a pairwise interaction process site interactions between a
point and its distant nearest neighbours (in any directions) might
be treated independently’ and ‘With a conservative attitude, it
is suggested herein that if the nearest known neighbours are
generally located uniformly throughout the study space and a
random path is used in a simulation, inclusion of nearest known
neighbours in non-cardinal directions may be considered’.

Li (2007) did not limit the conditioning of the MCRF approach
to four neighbours organized in orthogonal directions. The
neighbourhood size for the MCRF approach is flexible. Depending
on different lattices (or grids), the number of cardinal directions
can be different and can be three for a triangular lattice, four
for a rectangle lattice or six for a hexagonal lattice. Eight has
also been used in Markov random fields (Li, 2007). Li (2007)
finally notes ‘In addition, note that the so-called cardinal directions
are not limited to the exact four axial directions. For example,
a triangle lattice has only three cardinal directions (Pickard,
1980). A suitable tolerance angle for cardinal directions should be
feasible for dealing with irregular point samples with a random
path, and in a non-lattice space it may be feasible to consider
more than four cardinal directions’.

Final remarks

The earlier multi-dimensional Markov chain models proposed in
geosciences were not practical for real world applications for
conditional simulation of categorical spatial variables, and some
were primitive, for example the Markov chain model by Lou
(1996) and the CMC model of Elfeki (1996). Although they did
not effectively extend Markov chains into practical geostatistics,
they were initial stages and inspired later research.

The papers of Li and his colleagues published before 2007
in two-dimensional Markov chain modelling attempted to build
on the CMC idea and correct its deficiencies. The CMC model
by Elfeki (1996) and its extension (Elfeki & Dekking, 2001),
although having some deficiencies, were recognized as making
valuable progress in multi-dimensional Markov chain modelling
by Li and his colleagues. The basic idea of the CMC model
of coupling two independent chains was difficult to expand to
support a practical Markov chain geostatistical approach and Li
(2007) began to explore whether or not a single chain idea
could work and that finally generated the MCRF theory. The
MCRF theory generally supports Markov chain geostatistics, but
the implementation methods, such as model expansion, algorithm
design and transiogram estimation, still need to be developed.
Thus the development of the MCRF approach or MCG is still at
the early stage but the framework is present.

The MCRF theory (Li, 2007) contains the following: (i) the
basic idea that a single spatial Markov chain moves or jumps
in a space and decides its state at any location by interac-
tions with its nearest neighbours in different directions; (ii) a
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directly computable general solution, derived with the conditional
independence assumption (plus the conditional probability defini-
tion, the Bayes’ theorem and the law of total probability); (iii) an
accompanying metric to fit the general solution, the transiogram
for representing spatial correlations of categories; and (iv) a find-
ing based on the Pickard theorem and its applications that the
conditional independence could be regarded as proper for nearest
neighbours in cardinal directions in a sparse data space. Although
the CMC model of Elfeki (1996) is inevitably related, the core
ideas of the MCRF approach are not relevant to two- or coupled-
Markov chains. MCRFs are a special kind of Markov random
fields, as noted in Li (2007). The general solution of MCRFs can
be written in the form of a Gibbs distribution function, which
characterizes Markov random fields. Whether it is related to the
maximum entropy principle was never a concern. The maximum
entropy principle was first expounded by Jaynes (1957a,b), and
has been widely used in many applications. Examples of mod-
elling categorical variables are given by Phillips et al. (2006,
2008) in species distribution modelling. Therefore, whether or not
the MCRF approach can be related to the maximum entropy prin-
ciple, there seems to be no reason to claim that it belongs to the
BME approach proposed by Bogaert (2002) and D’Or & Bogaert
(2004). The single chain idea has not been proposed previously
in geostatistics or multi-dimensional Markov chain modelling and
it does explain MCRF models in any form. The MCRF quadrant
search simulation algorithm is just a specific application of the
MCRF general solution.
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