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Abstract Multidimensional Markov chain models in geosciences were often built
on multiple chains, one in each direction, and assumed these 1-D chains to be inde-
pendent of each other. Thus, unwanted transitions (i.e., transitions of multiple chains
to the same location with unequal states) inevitably occur and have to be excluded in
estimating the states at unobserved locations. This consequently may result in unre-
liable estimates, such as underestimation of small classes (i.e., classes with smaller
than average areas) in simulated realizations. This paper presents a single-chain-based
multidimensional Markov chain model for estimation (i.e., prediction and conditional
stochastic simulation) of spatial distribution of subsurface formations with borehole
data. The model assumes that a single Markov chain moves in a lattice space, interac-
ting with its nearest known neighbors through different transition probability rules in
different cardinal directions. The conditional probability distribution of the Markov
chain at the location to be estimated is formulated in an explicit form by following the
Bayes’ Theorem and the conditional independence of sparse data in cardinal directions.
Since no unwanted transitions are involved, the model can estimate all classes fairly.
Transiogram models (i.e., 1-D continuous Markov transition probability diagrams) are
used to provide transition probability input with needed lags to generalize the model.
Therefore, conditional simulation can be conducted directly and efficiently. The model
provides an alternative for heterogeneity characterization of subsurface formations.
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1 Introduction

Characterization of subsurface heterogeneity is crucial in many fields of earth science
such as soil science and hydrogeology, because subsurface facies (or layers) deter-
mine preferential paths of water and solute transport (Koltermann and Gorelick 1996;
Weigand et al. 2001). Borehole logs are the major information available for human
to understand the spatial distribution of subsurface facies. While providing sufficient
knowledge along the vertical one-dimensional (1-D) direction, a single borehole gives
little information about the lateral extension of subsurface facies. Because of high
cost, the densities of boreholes available from field surveys are normally too sparse
for surveyors to delineate reliable spatial distribution maps of subsurface facies in
multiple dimensions for many applications.

Subsurface facies normally exhibit features such as sharp boundaries, long-range
layers, asymmetric sequences, juxtaposition relationships and interdependencies (i.e.,
cross-correlations) between different facies types (i.e., classes) (Li et al. 1997; Carle
and Fogg 1997). While stochastic simulation conditional to observed data using
conventional geostatistics has been recognized as a feasible way for spatial pattern
prediction and uncertainty analysis of random variables from sparse samples (Deutsch
and Journel 1998), conventional geostatistical methods met difficulties in capturing
effectively these features, particularly spatial connectivity, of subsurface formations
(Bierkens and Weerts 1994), because of the difficulties in incorporating interclass
relationships (Li and Zhang 2005) and the linearity of kriging estimators.

Markov chain models can naturally incorporate interclass relationships through
cross transition probabilities. But early multidimensional Markov chain models deve-
loped in geosciences (e.g., Krumbein 1968; Lin and Harbaugh 1984) did not condi-
tion a simulation on samples. Conditional simulation models based on Markov chains
emerged only in recent years (Lou 1996; Elfeki and Dekking 2001; Li et al. 2004). In
Lou’s model, the estimator is linear and no high-order interaction is considered; conse-
quently, simulated patterns are fragmentary. Estimators in Elfeki and Dekking (2001)
and Li et al. (2004) are non-linear with consideration of high-order (i.e., distant)
interactions of observed data. The non-linear Markov chain conditional simulation
approach is efficient in computation, because conditional transition probabilities for
estimating unknown locations are explicitly given (Li and Zhang 2005). However,
their simulated results underestimate small classes in simulated realizations because
of the exclusion of unwanted transitions in the models.

It is a conventional idea in geosciences that multidimensional Markov chain models
for subsurface characterization may be built on multiple 1-D chains, one in each direc-
tion, and assumed those 1-D chains to be independent of each other (Carle and Fogg
1997). The coupled Markov chain model suggested by Elfeki and Dekking (2001) for
subsurface characterization, although being nonlinear, still followed the similar idea:
Two Markov chains—one in the vertical direction and one in the horizontal direction—
are assumed to be fully independent of each other and they move to the same location
with equal states. Thus, the transitions through which the two chains reach the same
location with unequal states become unwanted and have to be excluded in estimating
the state of the unobserved location. This exclusion consequently results in unreliable
estimates at unobserved locations: for example, small classes (classes or layer types
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with smaller than average areas) are underestimated in simulated realizations of the
coupled Markov chain model. The triplex Markov chain model suggested by Li et al.
(2004) used the idea of coupled Markov chains for calculating conditional probability
distributions; therefore, it also has the problem of underestimating small classes [see
simulated class proportion data in Li et al. (2004)].

Development of 2-D Markov models in recent years for other applications in
earth science such as generating and analyzing thematic remote sensing raster maps
(or images) can be seen in Patil and Taillie (2001). This paper introduces a single-
chain-based multidimensional Markov chain model for subsurface characterization
using borehole data on a regular lattice. By following the Bayes’ Theorem and the
conditional independence of sparse data in cardinal directions in Pickard random fields
(Pickard 1980), an explicit solution is derived without the occurrence of unwanted
transitions. Transiogram models (i.e., 1-D continuous Markov transition probability
diagrams) are used to provide transition probability input with needed lags. The new
model is theoretically sound and its workability is demonstrated by simulated results
of a soil vertical transect.

2 Problems and progresses

Consider the case that we have two borehole logs and the ground surface information,
which make the three boundaries of a vertical section. The task of simulating subsur-
face facies in vertical 2-Ds becomes a simulation of unobserved locations between
the two boreholes conditional on the three boundaries (Fig. 1). The vertical section is
normally discretized into a lattice and the estimation of each unknown pixel x may be
conducted by considering the influence of observed data in boundaries. To effectively
simulate the facies, the model used needs to meet the following conditions: (1) simu-
lation (or estimation) is conditioned on borehole data and the top layer; (2) interclass
relationships are incorporated; (3) the large-scale features and their geometrical shapes
(i.e., connectivity) of subsurface facies are captured approximately; (4) all classes are
produced fairly in their approximate proportions; and (5) input parameters can be
estimated from observed data with expert knowledge. Many existing methods have
difficulties meeting all of these conditions. For example, if we use indicator kriging,
we usually get dispersed patterns in simulated realizations, which are not effective
in representing the spatial connectivity of facies with clear boundaries, and realiza-
tions usually do not obey the interclass relationships between different facies because
only class auto-correlations are considered in indicator kriging simulation algorithms.
Although Markov random field (MRF) models can naturally incorporate interclass
relationships, they met other problems.

2.1 Directional effect

Conventional MRF methods (e.g., Besag 1986; Geman and Geman 1984; Norberg
et al. 2002) have difficulties accounting for anisotropies and large-scale features in
simulations because of the use of small, symmetric neighborhood systems (usually
four to eight adjacent neighbors) and iterative updating methods (Qian and Titterington
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Fig. 1 Illustrating a vertical
section, which has three known
boundaries—two boreholes (left
and right boundaries) and one
ground surface (top boundary).
A simulation means filling the
unknown area with conditioning
on the known boundaries. For an
unknown pixel x, we may
consider only the influence of
known pixels x1, x2 and x3.
Here N1 and N2 represent the
distances from x1 to x and from
x2 to x, respectively

1991; Tjelmeland and Besag 1998). Markov mesh models (e.g., Abend et al. 1965;
Qian and Titterington 1991) were proposed for image structure analysis and might
generate large-scale features by considering interactions between an unknown pixel
and its close predecessors (i.e., upper pixels and left pixels) (see explanation in Besag
1986). However, not only do they consider no distant interactions between an unknown
pixel and its surrounding sample data, when producing large-scale features they gene-
rate undesirable directional effect (i.e., layer inclination along the simulation direction)
as specifically demonstrated by Gray et al. (1994). This directional effect problem was
thought to be intrinsic because of the inherent asymmetry of neighborhood systems
used in Markov mesh models, as noticed and criticized by Besag (1986), Qian and
Titterington (1991), and Tjelmeland and Besag (1998). Both MRF and Markov mesh
methods use cliques (structures of pixels adjacent of each other) and fixed neighbo-
rhood systems, which makes it difficult to use them for direct conditional simulation
on sample data (i.e., generate a realization conditioned on observed data by one pass
rather than iterative updating).

The coupled Markov chain (CMC) model of Elfeki and Dekking (2001) is similar to
a simple Markov mesh model but with an extra full independence assumption (i.e., the
coupled two 1-D Markov chains in the vertical and horizontal directions are assumed
independent of each other). With this assumption, only 1-D transition probabilities are
necessary in simulating subsurface layers with borehole data. The CMC model could
condition a simulation on borehole data through multiple-step transition probabilities.
However, given the inherent asymmetry of the neighborhood, the CMC model cannot
avoid the directional effect problem when simulating large-scale features, as mentioned
by Li et al. (2004). To deal with the problem, Li et al. (2004) suggested the triplex
Markov chain (TMC) model with an “alternate advancing” path (AA) by importing
a third 1-D Markov chain. The TMC model was previously called a tripled Markov
chain model, which also used the full independence assumption but with three single
Markov chains for conditional simulation of subsurface formations through a “middle
insertion” (MI) path. Although using these special paths does not effectively solve the
underestimation problem of small classes, the undesirable directional effect problem
has indeed been resolved.

The MI path means that the current location to be estimated always falls in the
middle of two known pixels in a row. The AA path means that the Markov chain
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Fig. 2 Illustration of the two paths for the tripled and triplex Markov chain models when used for shallow
subsurfacet characterization. (a) The middle insertion (MI) path. (b) The alternate advancing (AA) path.
Thick solid arrows represent simulation proceeding directions. Dash arrows represent the directions of 1-D
Markov chains and point to the cell to be determined. Dash lines show the conditioning on a remote known
cell. Dark gray cells represent observed data. Light gray cells represent already simulated data

proceeds alternately in opposite directions row by row. The novelty of these two special
paths is that they make the simulated predecessors distributed at both (left and right)
sides of the unknown pixel to be estimated, making the simulation process symmetric
or quasi-symmetric in the x-direction (i.e., the lateral direction) and therefore imposing
balanced influences of known (observed or previously simulated) data to the unknown
pixel to be estimated (Fig. 2). The development of these two paths implies that the
undesirable directional effect problem in Markov chain (or mesh) modeling is solvable.
In fact, Wu et al. (2004) implicitly used the AA path in reconstruction of soil micro-
section images using their Markov mesh model and therefore avoided the directional
effect. Both paths are recommended for the model to be proposed in this paper. We
later also found that a similar path was used more early by Sharp and Aroian (1985) in
the herringbone method for dealing with a similar problem in extending autoregressive
processes into multiple dimensions.

2.2 Underestimation of small classes

Underestimation of small classes in simulated realizations results from the full inde-
pendence assumption of multiple chains in the CMC model and the TMC model. Such
an assumption is theoretically unproved in a Markov random field environment. With
the full independence assumption, the exclusion of unwanted transitions is inevitable
(see Elfeki and Dekking 2001, p. 575). With unwanted transitions being excluded,
as long as the current location of the Markov chain departs from observed data,
underestimation of small classes (correspondingly overestimation of large classes)
begins to occur and strengthens with increasing departure distance. The problem
reaches its peak in unconditional simulations, usually causing small classes to
disappear. But the problem weakens with increasing density of conditioning data (see
Li et al. 2004; Li and Zhang 2005).

This is also why the tripled Markov chain model was changed to the TMC model to
accommodate the idea of “conditioning to future state” in Elfeki and Dekking (2001),
because the requirement of three Markov chains moving to the same pixel with equal
states in the tripled Markov chain model implies more exclusion of unwanted transi-
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tions. The TMC model uses two CMCs with an AA path; therefore, it does not make
the small-class underestimation problem severer. On the contrary, by extending the
CMC to condition on data in both x and y directions and by balancing the influences
of conditioning data on both left and right sides of the unknown location to be esti-
mated, the problem is largely eased. For the small-class underestimation problem, see
simulated results and discussions in Li et al. (2004).

Since exclusion of unwanted transitions is inevitable with the full independence
assumption, the only way to eliminate this problem is not to use this assumption. This
means we have to find a new way to build a theoretically sounder multidimensional
Markov chain model. This will be the main task of this paper.

2.3 Estimating transition probabilities via transiograms

One-step transition probability matrices (TPMs) were used as parameter inputs in
Elfeki and Dekking (2001) and Li et al. (2004) for conducting simulation, where multi-
step transition probabilities were calculated from one-step TPMs based on the first-
order stationary Markovian assumption. While that represents a way to obtain multi-
step transition probabilities, in practical use, however, one-step TPMs are difficult to
estimate from sparse data. In subsurface lateral directions, there is actually no way
to estimate one-step TPMs directly from borehole data. In vertical directions, if the
observation interval is larger than pixel size used in a simulation, there is also no way
to estimate one-step TPMs directly from discontinuous borehole logs. In addition,
multi-step transition probabilities obtained by this way cannot capture effectively the
complex spatial heterogeneity of classes because the spatial distributions of natural
phenomena are normally not first-order Markovian.

Recently, Li (2006) proposed the transiogram concept as a new two-point spatial
relationship measure for categorical data. A transiogram is defined as a 1-D two-point
conditional probability (i.e., transition probability) function as

pij (h) = Pr(Z(x + h) = j |Z(x) = i) (1)

where h represents the distance lag, i and j represent states and pij (h) represents
a transition probability from state i to state j over the lag h. Here the random
variable Z is assumed spatially stationary, that is, the transiogram pij (h) is only
dependent on the lag h and not dependent on the specific locations x. Therefore, tran-
siograms represent a two-point spatial continuity/discontinuity measure, similar to in-
dicator variograms. Also similar to auto-variograms and cross-variograms, we can call
Pii(h) auto-transiograms and pij (h)(i �= j) cross-transiograms. Auto-transiograms
represent auto-correlations of single classes and cross-transiograms represent inter-
class relationships between different classes.

Transiograms may be directly estimated from data or indirectly calculated from
a one-step TPM. Transiograms calculated from one-step TPMs based on the first-
order Markovian assumption are called idealized transiograms, because they exhibit
very smooth curves and have quantitative relations with class proportions and class
polygon mean sizes. If available, they are helpful for interpreting observed (or real)
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transiograms, which are normally complex. The features of observed transiograms
that were not captured by idealized transiograms may be regarded as the high-order
Markovian (or non-Markovian) effect of data. Therefore, idealized transiograms are
not recommended to be used in simulations because of their oversimplification and
the difficulty in acquiring one-step TPMs from sparse samples.

We may directly estimate a limited number of multi-step transition probabili-
ties with different lags (called experimental transiogram) from sparse data and then
model the experimental transiogram with mathematical models. The method of using
mathematical models to fit experimental transiograms was introduced in Li and Zhang
(2006). When experimental transiograms are reliable, we even can simply interpolate
experimental transiograms into continuous models for use in Markov chain simula-
tion (Li and Zhang 2005). Considering the advantages of transiograms over one-step
TPMs, the transiogram is defined as a component of the proposed Markov chain model
in this study.

3 Conditional independence of sparse data

The conditional independence assumption states that given a pixel (or an event) its
surrounding adjacent pixels (or events) are conditionally independent. The applications
of this assumption in lattice data were usually limited to adjacent neighbors in cardinal
(or axis) directions.

In fact, if only considering cardinal directions, this assumption holds in Pickard
random fields (PRF) (Pickard 1980). Pickard (1980) proved the existence of a curious

unilateral MRF, which has a special property that for a generic clique

(
A B

C D

)
, given

any pixel D among A,B,C and D within the clique its two diagonally adjacent pixels
B and C are conditionally independent. So in a PRF, we have

Pr(B|D,C) = Pr(B|D) (2)

Based on this property, Pickard presented his model for binary processes.
This model was adapted by Haslett (1985), Idier et al. (2001), Fjortoft et al. (2003),

and others for image processing, where they assumed that given a pixel x all its four
adjacent pixels y1, y2, y3 and y4 (i.e., the upper, left, right, and underlying adjacent
pixels) in a neighborhood like

⎛
⎝ y1

y2 x y3
y4

⎞
⎠ (3)

are conditionally independent. This adaptation is straightforward and it is easy to see
this is a PRF.

Pickard’s Theorem is usually used for interactions of adjacent pixels or pixel blocks

in image processing. Note that the pixels in the generic clique

(
A B

C D

)
need not be

single pixels; they can be pixel blocks, as used in Derin et al. (1984) and Rosholm
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(1997). Here we want to apply the conditional independence to sparse data for high-
order (or remote) interaction.

Assume we have a general sparse-data structure in a PRF as

⎛
⎜⎜⎜⎜⎜⎜⎝

x1
...

x2 · · · x · · · x3
...

x4

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

where x1, x2, x3 and x4 are four nearest known neighbors of x along the cardinal
directions on a regular lattice. They may be distant from the pixel x with the distance
N1, N2, N3 and N4 (numbers of steps or pixels), respectively. Given the pixel x, are
they still conditional independent as the case of adjacent pixels in expression (3)?
Indeed, they still can be conditionally independent.

To prove this, let’s use E,F,G and H to represent pixel blocks of

(
x1
...

)
,
(
x2 · · · ) ,

( · · · x3
)

and

(
...

x4

)
, respectively, we immediately have that given x the four pixel

blocks of E,F,G and H in a PRF are conditionally independent, that is, for any pixel
block of E we have

Pr(E|x, F,G,H) = Pr(E|x) (5)

Since only one pixel is known in each of these pixel blocks, from Eq. 5 we further
have

Pr(x1|x, x2, x3, x4) = Pr(x1|x) (6)

Thus, we have shown that the conditional independence of sparse data with high-order
interactions along cardinal directions in a PRF is correct. That is, within a PRF, Eq. 6
holds. Equation 6 can be directly extended to the 3-D situation.

Further relaxing (6) to include data in non-cardinal directions is feasible only in
some situations; for example, when nearest known neighbors in different directions
are distributed symmetrically, such a relaxation should work. So we can generally
write the conditional independence assumption as

Pr(xi |x, x1, . . . , xi−1, xi+1, . . . , xn) = Pr(xi |x) (7)

4 The Markov chain model

To avoid unwanted transitions, we have to assume that one space is only described
by one single Markov chain. Here we assume that there is only one Markov chain
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Fig. 3 Illustration of the proposed single-chain-based Markov chain model with conditioning on two
boreholes. In simulation, it needs to follow the AA path or MI path. Arrows represent the interactions between
known pixels and the unknown pixel to be estimated as well as the directions of transition probabilities.
Dark gray cells represent observed data. Light gray cells represent already simulated data

moving or jumping in a 2-D space. The Markov chain interacts with its nearest known
neighbors (observed or previously simulated data) in cardinal directions by the same
or different transition probability rules. Such a Markov chain random field with the
property (6) will be a special PRF.

Let’s go back to the subsurface vertical section case as shown in Fig. 1. With three
boundaries (left, right, and top) being known, our simulation will be conducted from
top to bottom row by row. For each lattice cell (or pixel) x, it has three nearest known
neighbors x1, x2 and x3 in cardinal directions at its left, right, and top. These nearest
known neighbors may be remote or adjacent. We assume that a Markov chain moves
from x1 to the unknown location x and interacts with x1, x2 and x3. With the Bayes’
Theorem and Eq. 6 we have the conditional probability distribution of the Markov
chain at x factorized as follows:

Pr(x|x1, x2, x3) = Pr(x, x1, x2, x3)

Pr(x1, x2, x3)

= Pr(x3|x, x1, x2) · Pr(x2|x, x1) · Pr(x|x1) · Pr(x1)

Pr(x1, x2, x3)= C · Pr(x3|x) · Pr(x2|x) · Pr(x|x1)

(8)

where C is a constant because it does not involve x. C is given as

C = Pr(x1)

Pr(x1, x2, x3)
(9)

Rewrite (8) more concisely as

Pr(x|x1, x2, x3) = C · Pr(x3|x) · Pr(x2|x) · Pr(x|x1) (10)

Now we use Zi,j = k, Zi−N1,j = l, Zi+N2,j = q, and Zi,j−1 = m (see Fig. 3) to
replace location labels x, x1, x2 and x3, and use the transition probability formulism,
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we have Eq. 10 rewritten as

Pr(Zi,j = k|Zi−N1,j = l, Zi,j−1 = m,Zi+N2,j = q)

= C · ph
kq(N2) · pv′

km(1) · ph
lk(N1) (11)

where superscripts h and v′ represent directions of transition probabilities along axes
(i.e., horizontally from left to right and vertically from bottom to top, respectively),
not powers; N1, and N2 represent distances (i.e., number of spatial steps) between cell
(i − N1, j) and cell (i, j) and between cell (i − N2, j ) and cell (i, j), respectively;
p(N) represents a N -step transition probability, and k, l,m and q represent states.
Renormalizing the right hand side of Eq. 11 to cancel the constant C, we have

Pr(Zi,j = k|Zi−N1,j = l, Zi,j−1 = m,Zi+N2,j = q)

= ph
kq(N2) · pv′

km(1) · ph
lk(N1)

n∑
f =1

[
ph

f q(N2) · pv′
f m(1) · ph

lf (N1)
] (12)

Here it can be seen that no transitions are excluded in deriving Eq. 12 because there
is only one single Markov chain and no unwanted transitions need be excluded.

The model of Eq. 12 is the 2-D Markov chain model we can use for subsurface
characterization in the vertical two dimensions. If we use the MI path, we fix N1 = N2
(or N1 = N2 ±1 when the distance between two nearest known data on a row is even).
If we use the AA path as the TMC model did in Li et al. (2004), we fix N1 = 1. Anyway,
(i) we can eliminate the directional effect by using the novel paths aforementioned and
(ii) we have eliminated the root for underestimation of small classes because there are
no unwanted transitions excluded.

In case the upper boundary is unknown, it can be simulated using a 1-D conditional
Markov chain model. Such a 1-D model can be simplified from Eq. 12 by deleting the
terms related with the upper cell. We have it as

Pr(Zi = k|Zi−N1 = l, Zi+N2 = q) = pkq(N2) · plk(N1)
n∑

f =1

[
pf q(N2) · plf (N1)

] (13)

Equation 12 appears to be similar to Eq. 21 in Elfeki and Dekking (2001), but they
are actually quite different. The final equation of the CMC model (Elfeki and Dekking,
2001, Eq. 21) can be written as

Pr(Zi,j = k|Zi−1,j = l, Zi,j−1 = m,Zi+N,j = q)

= ph
kq(N) · pv

mk(1) · ph
lk(1)

n∑
f =1

[
ph

f q(N) · pv
mf (1) · ph

lf (1)
] (14)
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where v represents the vertical direction from top to bottom. The terms pv
mk and pv

mf in

(14) are completely different transition probabilities compared with the terms pv′
km and

pv′
f m in (12). They have different transition directions and also are different elements

in a TPM. They can be equal unless all classes account for equal proportions and the
Markov chain is reversible (e.g., soil layer sequences in soil profiles are vertically
symmetric), which are rarely true in geosciences.

Simply following the procedure from (8) to (11) and applying the conditional
independence assumption (7), we can get a general solution about the conditional
probability distribution of a Markov chain at an unknown location with m nearest
known neighbors in different directions:

Pr(X(x) = k|X1(x1) = l1, . . . , X(xm) = lm) =

m∏
i=2

pi
kli

(hi) · p1
l1k

(h1)

n∑
f =1

[
m∏

i=2
pi

f li
(hi) · p1

l1f
(h1)

]

(15)

where, pi represents the transition probability in the ith direction; x1 represents the
neighbor from which the Markov chain moves to the current location x; m represents
the number of nearest known neighbors; k, li , and f all represent states in the state
space S = (1, . . ., n); hi is the distance from the current location to the nearest known
neighbor xi. hi can be numbers of pixels or exact distance measures such as meter.
Note that for any nearest known neighbor xi , if hi is large enough (beyond related
correlation ranges), both pi

kli
(hi) and pi

f li
(hi) will approach pli (the stable probability)

and they can be canceled from the numerator and denominator.
Equation 15 represents a general solution, which also serves as the general solution

of Markov chain random fields (Li 2007). This general solution includes the solutions
for cases of only considering nearest known neighbors in cardinal directions in 1-D
to 3-D space. In this paper, we will not test other solutions by simulation except for
(12).

5 Parameter estimation

Both one-step transition probabilities and multi-step transition probabilities are nee-
ded for conducting simulation using the 2-D Markov chain model. These transition
probabilities with different numbers of spatial steps can be drawn from transiograms
pij (h) in different directions.

Experimental transiograms can be directly estimated from observed data. But when
data are too few, experimental transiograms may not be reliable. A good practice is to
apply expert knowledge and experimental transiograms together to infer transiogram
models for Markov chain simulation. Thus the practical way includes two steps: (i)
First estimating a dozen of transition probabilities with different lags from sample
data (i.e., experimental transiograms), and (ii) then fitting the estimated data with
mathematical models and expert knowledge. Even if there is no data available in some
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directions, by assessing the three determinant parameters of a transiogram model—
sill, correlation range, and transiogram shape (e.g., exponential or spherical) from
expert knowledge acquired from other ways, a transiogram model may be acquired.
This is also the normal practice used in estimating variograms. With model fitting,
transition probabilities at any lag can be acquired.

To guarantee that at any lag h all transition probabilities involving the same head
class (i.e., class i in pij (h)) sum to 1, we need always leave one transiogram (e.g.,
pik(h)) not model-fitted and infer it by

pik(h) = 1 −
n∑

j=1
j �=k

pij (h), (16)

where n is the number of classes (Li and Zhang 2006). Otherwise, the constraint
condition of summing to 1 may be easily violated in the processes of model fitting.
To guarantee that pik(h) be non-negative and well-fitted with the experimental tran-
siogram, the model fitting process of other transiograms may need repetitive tuning.
Our experiences suggest that this is generally easy to do.

Figure 4 shows a subset of the 16 experimental auto/cross-transiograms in a lateral
direction (west-to-east) estimated from 20 boreholes of alluvial soils in a 2-m depth
with equal intervals and fitted models using exponential and spherical curves. Figure 5
shows a subset of experimental auto/cross-transiograms and fitted models in a vertical
direction (bottom-to-top). It should be noticed that the effective fitting of the first
several points of experimental transiograms is important because these low-lag points
are more reliable than others and it is the low-lag section of transiogram models that
is used in simulations. In vertical directions, the Markov chain model needs only one-
step transition probabilities in the bottom-to-top direction, which can be drawn from
these transiogram models. One-step transition probabilities in vertical directions may
also be directly estimated from borehole logs if the observation interval in borehole
logs is the same as the vertical pixel size used in simulation.

There are clear relations between pij (h) and proportions of individual classes. The
sill ofpij (h) is theoretically equal to the proportionpj of the tail class j . This is because
with increasing lag h, pij (h) will approach the proportion of class j in a stationary
and irreducible Markov chain process. The equality between sills of transiograms and
proportions of tail classes (i.e., class j in pij (h)) provides a guidance for model fitting
of experimental transiograms, because proportions can be approximately estimated
from observed borehole data. It can be seen from Figs. 4 and 5 that sills of some
experimental transiograms (e.g., cross-transiogram p12(h), represented by p(1, 2) in
Fig. 4) apparently deviate from the proportions of the tail classes (e.g., the estimated
proportion of layer type 2 is 0.28. Note that sills of all fitted models are set to the
proportions of corresponding tail classes). This is because of the boundary effect (Li
2006) and the nonstationary distribution of classes in a small domain (e.g., Layer type
2 is mainly located at the upper part). For such situations, it is proper to set these fitted
transiogram models to the expected sills. But if the simulation domain (i.e., the length
and width) is sufficiently large, there normally has no such deviation.
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Fig. 4 Experimental auto/cross-transiograms in a lateral direction (west-to-east) estimated from 20 bo-
rehole logs and fitting models using exponential and spherical distribution curves (sills are set to correct
proportions of tail classes). Boreholes are 2-m deep and located along a transect with an equal interval of
15 pixels (about 254-m)

6 Simulation example

Below a simulation example is given to show the feasibility of the 2-D Markov chain
model in Eq. 12. The example is a simulation of a vertical section of alluvial soils
with four different layer types — sand, sandy loam, loam, and clay (labeled with 1,
2, 3, and 4, respectively). The vertical section has a 5,250-m length and a 2-m depth.
A reference map of the vertical section is hand-delineated based on a large number of
densely distributed borehole logs, which are normally not available in soil survey. Such
a map does not represent the absolute truth. It is just an expert interpretation based
on dense data and may represent an expected result. Exhaustive information of the
reference map is not used for simulation. It is provided only for the purpose of a visual
comparison with simulated results. Considering the density of boreholes is normally
low in soil survey, in the following simulations only a small portion of boreholes are
used as conditioned data. These borehole logs are continuous observation data.

The vertical section is randomly discretized into a lattice of 310 columns and 43 rows
(so that images can be easily displayed). 20 borehole logs with approximately equal
intervals are used for transiogram estimation. Some of transiograms used are already
shown in Figs. 4 and 5. The simulation will draw needed transition probabilities from
those transiogram models. In this simulation, simulated results using the AA path,
which are close to the simulated results using the MI path, will be shown. Simulation
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Fig. 5 Experimental auto/cross-transiograms in a vertical direction (bottom-to-top) estimated from 20
borehole logs and fitting models using exponential and spherical distribution curves (sills are set to correct
proportions of tail classes). Boreholes are 2-m deep and located along a transect with an equal interval of 15
pixels (about 254-m). Vertical observational interval is 5-cm. Only one-step transition probabilities (close
to the origin point (0, 0) for cross-transiograms or (1, 0) for auto-transiograms) in this vertical direction are
used in the proposed model

will be conducted by conditioning on different numbers of borehole logs so that we can
see whether or not all layer types are effectively represented in simulated realizations.

Hundred realizations are generated and probability maps are estimated from them.
Figure 6 shows simulated results conditioned on 11 boreholes. The borehole inter-
val is 525-m (or 31 data columns), which is a quite normal interval used in a soil
survey. Results show that both simulated realizations and the prediction map mi-
mic the original map to a large extent. The occurrence probability maps display
clearly the distribution of spatial uncertainties of occurrence of different layer types.
The maximum occurrence probability map shows where larger uncertainties (lighter
color) occur: interestingly, they occur where the boundaries of simulated layers are
most probably located.

When increasing the number of boreholes to 22, that is, decreasing the borehole
interval to about 254-m (or 15 data column), which is still an acceptable interval in
a detailed soil survey, simulated realizations mimic the reference map very closely
(Fig. 7). At the same time, the spatial uncertainties in simulated results become small
(see the occurrence probability maps). The maximum occurrence probability map
displays the uncertainty of layer boundaries.

Important features that should be noticed are that the directional asymmetry of layer
occurrence sequence in the vertical direction is well kept and the layer boundaries are
clear in prediction maps based on maximum occurrence probabilities and all single
realizations no matter how many boreholes are conditioned. These features should
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Fig. 6 Simulated results with conditioning on 11 boreholes (about 525-m interval) and the top boundary.
The top map is a reference map of the alluvial soil transect (5,250-m long and 2-m deep) with four types of
textural layers (it is delineated based on a large number of boreholes record, provided here just for a visual
comparison). The prediction map is based on the maximum occurrence probabilities estimated from 100
realizations. Occurrence probability maps of individual soil layer types are estimated from 100 realizations

be attributed to the unidirectional characteristic of transiograms, the incorporation
of interclass relationships described by cross-transiograms, and the non-linearity of
the model. The simulated patterns are not necessarily exactly the same as that in the
reference map, because simulation is based on the limited information conveyed by
the conditioned borehole data and the input transiogram models. Uncertainty also
normally exists in the transiogram estimation and modeling process (i.e., different
modelers may model them with some differences).

Figure 8 provides the proportions of the four layer types in the reference map
(serving as expected proportions), borehole data, and simulated realizations. Simulated
proportions are averaged from 100 realizations. Though a little deviation between
simulated and expected proportion data can be found, apparently all layer types are
fairly generated.

7 Conclusions

In this paper a single-chain-based 2-D Markov chain model is proposed for conditional
simulation of subsurface formations. The model has only a single Markov chain, which
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Fig. 7 Simulated results with conditioning on 22 boreholes (about 254-m intervals) and the top boundary
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moves in the space and interacts with its nearest known neighbors in different cardinal
directions. With the justification that the conditional independence of sparse spatial
data in cardinal directions holds in a PRF, the conditional probability distribution of
an unknown location to be estimated is obtained explicitly.

The model avoids unwanted transitions occurred in previously proposed non-linear
2-D Markov chain conditional simulation models (i.e., the CMC and the TMC models).
Thus, both small and large classes can be estimated fairly. Experimental transiograms
were estimated from limited observed data and then fitted by models, which further
provided transition probabilities at any lags needed in simulations.

A simulation example showed that the model worked well with different numbers of
borehole logs serving as conditioning data. Because of its efficiency in computation, the
model is suitable for performing spatial uncertainty analysis of subsurface formations
by generating a large number of realizations and conducting probability mapping. The
model may be further extended for 3-D simulation.
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