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Huang et al. (2016) claimed that (1) they generalized the Markov chain random field (MCRF) model 

(Li 2007) using potential functions, (2) they found the internal relationship between Markov random fields 

(MRF) and MCRF, (3) they solved the highly time-consuming problem of MRF, (4) they proved that 

MCRF could be derived from MRF, and (5) they implemented a 3D MCRF model in a case study. In their 

paper, they copied many pieces of sentences from our earlier papers, and wrote lots of complex equations 

to puzzle readers. However, after carefully reading their paper, we found that it was just a trick that could 

effectively mislead many people.  

The second section of Huang et al. (2016) is “Markov chain model”. However, they focused on 

introducing the unconditional coupled Markov chain (CMC) model of Elfeki (1996). Given the fact that 

both the unconditional CMC model and the conditional CMC model (Elfeki and Dekking 2001) 

underestimates small classes and have other deficiencies, it is difficult to say the CMC model represents 

“Markov chain model”. Further extensions of the CMC model by Li et al. (2004) and Li and Zhang (2006) 

made it more flexible and useful, but only under the situations of very dense sample data (e.g., dense 

borehole or survey line data) or lacking small classes. We do recognize the contribution of the CMC 

model, but this does not mean the model is theoretically sound. The small class underestimation problem 

of the CMC model had been proved and solved many years ago (see Li 2007). It may not be an interesting 

issue to always introduce it. 

The third section of the paper is “Localized MRF approach”. However, the authors came to reinterpret 

irrationally the figure presented in Li (2007), which represents the MCRF defined on sparse sample data. 

The nearest data, the location being estimated and the transition probability directions in the figure 

together were surprisingly interpreted as various “cliques” (with one-edge, two-edges, three-edges and so 

on) by the authors. They stated that arrows (i.e., transition probability head-tail directions) “represent 

energy transfer direction”. They did not forget to mention that “MRF is traditionally defined as undirected 

graph in graph theory”. Here our questions are: 1) who defined MRF on sparse sample data? 2) what is the 

reason for an unsampled location to transfer energy to a nearest datum? and 3) if MRF (note that it should 

be “Markov network”) is an undirected graph, why did it become a directed graph here? 

Then the authors considered site s with three neighbors - s1, s2 and s3, and provided all the potential 

functions Vn. Each of those potential functions for their “cliques” was decomposed into a sum of 

logarithms and negative logarithms of two-point and multiple-point conditional probabilities. For example, 

their “three-edge clique” potential function was decomposed as 

 

Then the authors obtained their Equation (14), and claimed that “Here, the joint probability of an MRF can 

be expressed by the product of local conditional probabilities. The complicated parameter estimation 

algorithm and iteration process can be avoided by computing local conditional probabilities. So, the highly 

time-consuming problem of MRF mentioned in Ref. [21] has been solved.” (note that here the Ref. [21] 

means Stien and Kolbjørnsen (2011)). Here our questions are: 1) how can you solve the multiple-point 

conditional probabilities in your clique potential functions? and 2) if you cannot solve the multiple-point 
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conditional probability terms, how can you solve the localized MRF model? The truth is that the authors 

solved nothing! 

The fourth section of the paper is “Relationship between MRF and MCRF”. However, what the 

authors did are as follows: 1) wrote the simplified MCRF model based on the conditional independence 

assumption into a different style (i.e., an exponent-logarithm form); 2) directly put the new form of MCRF 

model into their energy function; and 3) then changed the two-point conditional probability term and those 

two-point likelihood function terms into transition probabilities with distance lags. Then they claimed that 

they derived the joint probability of an MRF exactly as the MCRF model. How did they derive it? Use a 

trick – use the MCRF model in a different form to derive the MCRF model! They used the likelihood 

functions in the MCRF model to replace their “clique” conditional probability functions in their MRF 

model, without any reasons! 

They did not forget to mention the conditional independence assumption. Our question is: how could 

they use the conditional independence assumption to a multiple-point conditional probability such as 

 in their localized MRF model to get a two-point transition probability? Apparently, the 

authors could not understand that the conditional independence assumption for nearest data within a 

neighborhood around an unobserved location, which was defined in Li (2007), is only applicable to the 

multiple-point likelihood functions such as ),,|Pr( 312 ffff s  with fs representing the label of unobserved 

location, not applicable to the ordinary multiple-point conditional probabilities such as . 

One cannot get  = )|Pr( 2 sff  or )|Pr( 2ff s  with the conditional independence assumption. 

In the MCRF model (Li 2007), the multiple-point conditional probabilities that were simplified into 

transition probabilities using the conditional independence assumption are essentially multiple-point 

likelihood functions. That is why the directions of those transition probabilities are from the unobserved 

location to nearest data, not the inverse. Apparently, because they could not understand and pass through 

this step, the authors had to play a trick. Therefore, the authors did not derive the simplified MCRF model 

from MRF model, nor generalized it by potential functions, because the MCRF model is already 

generalized, let alone that MRF was never a spatial model defined on sparse sample data.   

There is no necessity to further examine their MRF model anymore. Now let’s check their case study. 

They have only four well logs, but they estimated both vertical and lateral transiogram models from them. 

The 3-D model they used for their case study (i.e., Equation (28) in their paper) is exactly the 3-D MCRF 

model provided in Li (2007) for conditional simulation. They claimed they did their simulation “by using 

MCRF algorithm”, but they did not mention what and where the MCRF algorithm they used is. They 

provided “four realizations of MCRF lithofacies stochastic simulation” and three maximum occurrence 

probability maps of mudstone generated by MCRF algorithm, conditioned on 1765 samples”. The authors 

did not tell where and how they suddenly got 1765 samples. But one thing we can see is that none of the 

result maps was from the real MCRF model. Apparently they did not develop a suitable simulation 

method to condition the simulation of a grid cell to surrounding nearest data.  

After their “MCRF simulation”, they made a comparison with TMC simulation, and this time they 

provided a simulation procedure which has no way to work. Did they use the TMC fixed-path simulation 

algorithm? What is surprising is that they only used a simple local conditional probability 

, which even cannot be conditioned to surrounding sample 

data or nearest data in six cardinal directions, for performing simulation. Isn’t it suitable to compare a 

simulation by a 3-D MCRF model, which is conditional to nearest data in six cardinal directions, with a 

simulation by a TMC model that is only conditional to three immediately adjacent cells? Does this mean 

that their MCRF conditional simulation was also a simulation conditional to only three immediately 

adjacent cells? Is such a spatial simulation proper? 

In the second section, they mentioned that “Liang et al. (2014) proposed the triplex Markov chain 

(TMC) in 3-D space” with showing an unconditional 3-D CMC model. In the Introduction section, they 
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stated that “Liang et al. (2014) used MRF tool to simulate lithofacies distribution and proposed a Gibbs 

distribution to characterize reservoir heterogeneity”. In their eyes, the unconditional CMC model is a 

MRF and their 3-D CMC model was always unconditional (to borehole data ahead), but in the TMC 

method (Li et al. 2004) both CMCs are conditional to sample data ahead in two directions. They knew that 

the TMC model is composed of two CMCs, but it seems they did not understand that the purpose of the 

TMC using two CMCs was to overcome the directional effect (essentially the unilateral correlation 

problem of simulated data) occurring in simulated realizations of the CMC model, as they stated that “The 

fully independent assumption caused directional effect (i.e., pattern inclination or diagonal trend) and the 

small-class underestimation problem.” The directional effect is irrelevant with the full independence 

assumption.  

Finally they concluded that “The focus of this work is the theoretical foundation of Markov chain 

random field (MCRF) and relationship between MRF and MCRF.” In Li (2007), the MCRF model was 

clearly derived using Bayes’ theorem and the derivation process was simple and rational. However, in 

Huang et al. (2016), the authors threw away the real theoretical foundation of the MCRF model – Bayes’ 

theorem, and they assigned a new theoretical foundation to the MCRF model.  

Then what is the contribution of their paper and what scientific problem did they solve in their paper, 

except for playing a trick with misleading statements? Claiming that they derived the MCRF model from 

the MRF model by playing a trick and performing wrong simulation case studies to get wrong results to 

mislead others are improper.  
 

 

References 

[1] HUANG X, WANG ZZ, GUO JH. Theoretical generalization of Markov chain random field from potential function 

perspective. Journal of Central South University, 2016, 23(1): 189–200. 

[2] LI W. Markov chain random fields for estimation of categorical variables. Mathematical Geology, 2007, 39(3): 321-335. 

[3] ELFEKI AM. Stochastic characterization of geological heterogeneity and its impact on groundwater contaminant transport. 

Ph.D. diss. Delft University of Technology, Balkema Publisher, The Netherlands. ISBN 90-5410-666-2. 1996.  
[4] ELFEKI AM and DEKKING FM. A Markov chain model for subsurface characterization: Theory and applications. 

Mathematical Geology, 2001, 33: 569–589. 

[5] LI W, ZHANG C, BURT JE, ZHU A, FEYEN J. Two-dimensional Markov chain simulation of soil type spatial distribution. 

Soil Science Society of America Journal, 2004, 68(5): 1479-1490.  

[6] LI W, ZHANG C. A generalized Markov chain approach for conditional simulation of categorical variables from grid samples. 

Transactions in GIS, 2006, 10(4): 651-669. 

[7] STIEN M, KOLBJØRNSEN O. Facies modeling using a Markov mesh model specification. Mathematical Geosciences, 2011, 

43(6): 611–624. 

[8] LIANG YR, WANG ZZ, GUO JH. Reservoir lithology stochastic simulation based on Markov random fields. Journal of 

Central South University, 2014, 21: 3610-3616. 

 

 

 

Weidong Li   Email: weidong.li@uconn.edu or weidongwoody@gmail.com Tel: 1-860-486-2728 

Chuanrong Zhang   Email: chuanrong.zhang@uconn.edu  Tel: 1-860-486-2610 

May 31, 2016, Storrs.  

mailto:weidong.li@uconn.edu
mailto:weidongwoody@gmail.com
mailto:chuanrong.zhang@uconn.edu

