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Summary 
Spatial pattern characterization of categorical soil variables is crucial for predictive soil mapping and 

environmental management at watershed scales. This study attempts to evaluate the coupled Markov 

chain (CMC) model for characterizing the complex spatial patterns of categorical soil variables. Two 

simulation cases about soil types and alluvial soil textural layers are conducted for evaluating the 

feasibility and constraints of the CMC model for mapping categorical soil variables from survey line 

samples. Results indicate that the CMC model can capture the spatial patterns of categorical soil variables 

under a high density of transect line survey data or borehole data. However, when the density of survey 

data is relatively low, some obvious prediction artifacts such as parcel (or layer) inclination along the 

simulation direction show, and minor or small states (soil classes) are obviously underestimated. The 

possible reasons for these constraints are discussed. Such an efficient model is desirable for modeling 

categorical variables over moderate to large areas, but further efforts are needed to improve it in dealing 

with the data sparseness and eliminating the prediction artifacts.  

 

 

Introduction 
Categorical soil data, such as subsurface soil layers and surface soil classes, are crucial in land 

management, precision farming, and environmental analysis and modeling over watershed scales (Kite & 

Kauwen, 1992; Feyen et al., 1998; Li et al., 2001; Zhu & Mackay, 2001; Bouma et al., 2002). Categorical 

spatial variables are usually composed of multiple nominal classes with complex spatial patterns. The 

special features of categorical spatial variables in earth sciences, such as soil types, are revealed in their 

complex spatial dependence, site-specific sequences, anisotropies, and abrupt boundaries between 

multinomial classes. This complexity poses challenging problems for many spatial simulation methods, 

such as indicator geostatistics (Gomez-Hernandez & Srivastava, 1990; Deutsch & Journel, 1998), to 

effectively mimic them over watershed scales from limited samples (Wingle & Poeter, 1993; Bierkens & 

Weerts, 1994; Weissmann & Fogg, 1999; Zhang & Goodchild, 2002). Typical problems, for examples, 

include (i) the high demand in computation (Ehlschlaeger, 1998, 2000), which prevents these methods 

from applying over watersheds or larger areas for modeling multiple classes with required resolutions, (ii) 

the difficulty to deal simultaneously with sharp boundaries and auto-correlation (Mowrer & Congalton, 

2000; McBratney et al., 2000), and (iii) the difficulty to cope with cross-correlations between multinomial 

classes within simulation algorithms (Goovaerts, 1997). It is desirable to find a highly efficient method 

capable of mimicking spatial patterns of categorical soil variables from sampling data so that categorical 

soil information can be effectively assessed and integrated into environmental modeling. Heuvelink & 

Webster (2001) presented a thorough review on methods for modeling soil variations. Scull et al. (2003) 

specifically reviewed the methods for predictive soil mapping. Some significant methods proposed for 

dealing with various categorical soil data and their application cases can be seen in Bierkens & Burrough 

(1993a, b), Bierkens & Weerts (1994), Carle & Fogg (1996), Lark & Webster (2001), and Zhu et al. 

(2001). 

Markov chain methods represent an important approach for heterogeneity characterization of 

categorical variables. It was thought that compared with indicator variograms (Goovaerts, 1997; Deutsch 
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& Journel, 1998), Markov transition probabilities are more intuitive, easier to interpret, and therefore, 

relatively easier to incorporate soft information, particularly expert knowledge such as facies length, 

proportions, and juxtaposition relationships, into parameter estimation (Weissmann & Fogg, 1999; 

Weissmann et al., 1999). However, Markov chains are conventionally used for one dimension. Typical 

application examples of one-dimensional Markov chains in some fields of geosciences can be seen in 

Harbaugh & Bonham-Carter (1980) for synthesizing stratigraphic sequences, in Todorovic & Woolhiser 

(1975) for simulating year precipitation processes, and in Balzter (2000) for species change. Burgess & 

Webster (1984a, b) first applied Markov chain transition probabilities in soil science to describe the 

spatial order of parcels of different soil classes in one-dimension. They estimated transition probabilities 

from linear transects across some soil maps and applied them to optimal sampling strategies for mapping 

soil types. Li et al. (1997, 1999) used one-dimensional Markov chain methods to describe the vertical 

changes of alluvial soil textural layers and simulate alluvial soil textural profiles. They estimated 

transition probabilities from a number of soil boreholes, which are thought to be individual realizations of 

a short Markov chain. Although multi-dimensional Markov chain methods for unconditional simulation 

have a longer history (Lin & Harbaugh, 1984; Johnson et al., 1999), conditional multi-dimensional 

Markov models emerged only recently in geosciences as a tool for characterizing categorical variables 

(e.g., lithofacies) (Elfeki & Dekking, 2001; Norberg et al., 2002). By now we have not seen any attempts 

to apply multi-dimensional Markov chain methods in modeling categorical soil variables. 

The Markov random field (MRF) model of Norberg et al. (2002) is relatively complex and high 

demanding in computation because of its heavily iterative simulation algorithm. For example, for an area 

of about 100×100 pixels (i.e., grid cells), 1.5 to 2.5 days of run time on a SUN workstation are needed for 

producing a realization, as mentioned by the authors. Other deficiencies include (a) the under-estimation 

of minor states, and (b) the inability to reproduce the transition probabilities of the original map, which 

makes the method ill-suited for uncertainty analysis by means of repeated simulations, as also mentioned 

by the authors. These constraints make it currently not suitable for modeling categorical soil variables 

over large areas with required resolutions from limited samples. On the contrary, the coupled Markov 

chain (CMC) model of Elfeki & Dekking (2001) uses an explicit non-iterative algorithm (i.e., one pass 

one realization), which makes it highly efficient. The study cases of Elfeki & Dekking (2001) only 

demonstrated that the CMC model could capture the major features of subsurface geological formations 

when a number of well data were conditioned but did not talk about its deficiencies. Some shortcomings, 

such as layer disconnectedness along borehole lines and under-prediction of minor/small states can be 

directly seen from the simulated results given by the authors. It is not clear whether or not and if 

applicable under what conditions such an efficient model can be used to characterize the spatial 

heterogeneity of categorical soil variables.  

In this paper, we will attempt to extend and directly use the CMC model for modeling categorical 

soil variables over watershed scales. Study cases, respectively about soil types and alluvial soil textural 

layers, will be given. Different conditioning schemes (i.e., different densities of sampled line-data) will be 

used to study the applicable conditions and the constraints for applying the model in producing 

categorical soil data.    

 

Methods  
The CMC model 

The detailed explanation of the CMC model can be seen in Elfeki & Dekking (2001). Here we only give a 

simple introduction and the final equations. Because the CMC model is developed for characterizing 

subsurface geological formations in vertical sections, simulation is only conditioned on well data and the 

upper boundary.  

The CMC model is composed of a horizontal one-dimensional Markov chain and a vertical one-

dimensional Markov chain, which are perpendicular to each other in a two-dimensional domain (Figure 1). 

The two one-dimensional Markov chains are assumed to be stationary and fully independent of each other. 

Assuming that Xi and Yj represent the horizontal one-dimensional Markov chain and the vertical one-

dimensional Markov chain, respectively, both defined on the state space [S1, S2, ..., Sn]. These two Markov 
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chains form a CMC Zi,j with the joint transition probability from state Sl at Zi-1, j and state Sm at Zi, j-1 to the 

same state Sk at  Zi,j being expressed as 
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where
x

lkp is the one-step transition probability of the chain Xi in the x-direction (i.e, the horizontal 

direction for a vertical section), 
y

lkp  is that of the chain Yi in the y-direction (i.e, the vertical direction for a 

vertical section), and superscripts x and y stand for directions. Equation (1) is the initial version of the 

CMC model developed by Elfeki (1996), which was used in Li (1999) with unsatisfied results; here we 

denote it as CMC0. This model only conditions to the upper boundary (i.e., surface) and one side 

boundary (i.e., one well). These two boundaries are also necessary for conducting a two-dimensional 

simulation using the CMC approach. Simulation is performed from one upper corner (e.g., top-left) to the 

diagonal corner (e.g., bottom-right). 

If a “future” state q at location ZNx, j is known in the x-direction, to consider its influence to the current 

unknown state k, the one-dimensional Markov chain in the x-direction, Xi, can be approximately but cheaply 

conditioned on this future state. The expression of the conditional joint transition probability in such a 

conditional CMC Zi,j (Figure 1) is given by   

       

 












f

y

mf

iNx

fq

x

lf

y

mk

iNx

kq

x

lk

qjNmjiljikjiqklm

ppp

ppp

SZSZSZSZpp

x

x

x

)(

)(

,1,,1,|, ),,|(

                              (2) 

where 
)( iNx

kq
xp


is the (Nx-i) step transition probability of the one-dimensional Markov chain Xi in the x-

direction, which can be calculated by imposing a (Nx-i) power to the one-step transition probability matrix 

(TPM). Other symbols are similar to those in Equation (1). When cell Nx is far from cell i the terms 
)( iNx

lqp 
and 

)( iNx

fqp 
will have no influence because they are almost equal. However, when simulation gets 

closer to cell Nx, its state will start to play a role and the simulation result will be affected by the state at 

that cell (Elfeki & Dekking, 2001).  

 

 
Figure 1   A coupled Markov chain conditioned on borehole lines. Dark gray means known data. Shallow gray 

means simulated data. 

 

Equation (2) represents the CMC model in Elfeki & Dekking (2001) for subsurface characterization, 

here denoted as CMCx. Conditioning on the other boundary and internal well data as future states is 

obviously a major improvement in this model, which, to a large extent, promotes this model to a two-

dimensional stochastic method for conditional simulation. Such a model is directly suitable for simulating 
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alluvial soil textural layers in vertical transects by conditioning a simulation on soil borehole data, which 

are equivalent to lithological well data.  

For characterizing the spatial distribution of soil types on the ground surface, we use survey lines to 

replace boreholes. Because survey lines can be obtained in both the x-direction and the y-direction, the 

CMC model will be extended to condition on survey line data in these two directions (Figure 2). Such an 

extension is straightforward. Assuming that So is the state at cell Zi,Ny on the opposite boundary in the y-

direction, the conditional joint transition probability of the CMC with conditioning on future states in the 

x- and y-directions can be given as 

      















f

jNy

fo

y

mf

iNx

fq

x

lf

jNx

ko

y

mk

iNx

kq

x

lk

oNyiqjNmjiljikjiqoklm

yx

yx

x

pppp

pppp

SZSZSZSZSZpp

)(

),,,|(

)()(

)()(

,,1,,1,|,

             (3) 

where 
)( jNx

ko
yp


is the (Ny-j) step transition probability of the one-dimensional Markov chain Yj in the y-

direction. Other symbols are similar to those in Equation (3). Note that the full independency assumption of 

the two one-dimensional Markov chains is used in derivation of all of the above three equations. 

In such a CMC model, survey lines in the x and y directions will divide a two-dimensional domain into 

sub-domains, which we will call “windows” in this paper. Here we denoted this CMC model as CMCxy. 

Two-dimensional simulation can be performed in each window using Equation (3) with conditioning on the 

four window boundaries (Figure 2). 

 

 
Figure 2   A coupled Markov chain conditioned on survey lines in two directions. Dark gray means known cells. 

Shallow gray means simulated cells. 

 

Parameter inference 

The main input parameters are the one-step TPMs of the two one-dimensional Markov chains. Other input 

parameters include the number of states, the number of the domain grid columns and the number of the 

domain grid rows. The cell size and simulation domain extents are needed only for discretizing the simulation 

domain and displaying realization images with the true length and width. In the following simulated images 

we will only show the grid column and row numbers. 

For a soil system represented by a Markov chain, one has to first define the set of possible states of the 

system, [S1, S2,…, Sn], and the one step transition probabilities (i.e., the two TPMs) for the two one-

dimensional Markov chains. The state space can be determined according to actual needs, rather than the 

soil taxonomy. For example, soils can be according to the research purpose (e.g., hydrologic modeling) 
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classified into several types or classes. The transition probabilities can be determined by superimposing a 

lattice on soil maps that are representative for the simulation and counting the state changes in different 

directions. The cell size (square or rectangle) should not be larger than the smallest parcel size to be shown 

in simulated realizations and should be the same for both parameter estimation and simulation.   

The transition frequencies between the states in the x- and y-direction can be calculated by counting 

the times of a given state (e.g., Si) followed by itself or the other states (e.g., Sj) in the direction on the 

lattice, and then the one-step transition probabilities can be obtained by dividing the transition frequencies 

with the total number of transitions as below: 





n

j

ijijij TTp
1

                                                                              (4) 

where, Tij is the transition frequency from state i to state j in the x-, and  y-direction on the lattice. Joint 

transition probabilities for a conditional CMC can be further calculated based on the above equations.  

Borehole data recording soil layers normally has no gap. For modeling soil types, data for 

conditioning should also be continuous (i.e., no gap) lines. The requirement of conditioning on survey 

lines is special comparing with other methods, but might be advantageous given the prominence of 

transect sampling. Please note that TPMs may be estimated from various soft data, as mentioned by many 

researchers (Rosen & Gustafson, 1996; Weissmann & Fogg 1999; Weissmann et al., 1999). Here we will 

not explore this subjective problem but rather only test the feasibility of applying this method on 

categorical soil data modeling.  

 

Simulation procedure 

Monte-Carlo sampling method is used to conduct stochastic simulations using the above models. A 

simulation procedure involves the following set of instructions, which is similar to those introduced by 

Elfeki & Dekking (2001):  

Step 1: The two-dimensional domain to be simulated is discretized using a predefined grid cell size.  

Step 2: Survey line data are inserted into the simulation area (including outer boundaries). Note, internal 

survey lines (or boreholes) will divide a simulation area into windows, and the simulation will proceed in 

each window one by one in the same way.  

Step 3: Generate the internal unknown cells with numbers (i, j), i=2, ..., Nx-1 and j=2, ..., Ny-1 in each 

window row by row using the conditional joint transition probability distribution.  

Step 4: The procedure continues until all unknown cells in the two-dimensional domain are visited.       

Step 5: Repeat step 3 and 4 to produce the next realization. 

 

Probability map 

We will use probability maps to show the spatial uncertainty of every sate (soil or layer type), namely 

how likely a component occurs at every location in a simulated area. A probability map is calculated like 

this: When a state occurs at a location (i.e., a cell) in a realization, it is counted. By dividing the total 

number of occurrence of a state at a location counted from many realizations with the realization number, 

we can get an occurrence probability of the state at the location. Thus, a probability map can be obtained 

for each state through visualizing all its probability values on every location. The provided probability 

maps in the study are calculated from 100 realizations. 

 

Simulation cases  
Case one – a soil map with seven classes   

First we simulate a soil map with a length of 8km and a width of 1.7km. This map is cut from a watershed 

soil map in a river basin of Belgium. The soil is classified into seven types. The soil map is shown in 

Figure 3, top. We can see that the soil types have very complex spatial patterns and that different types 

account for different areal proportions, namely, some types occur frequently but some other types occur 

infrequently. The map is discretized into a 160×34 grid with a cell size of 50m. Input parameters, i.e., 
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TPMs directly estimated from the map are given in Table 1. We use the map as a reference to test whether 

the CMCxy model can work with soil class map simulation.  

 
Table 1   Input parameters estimated from the original soil type map 

States: 7     Grid column number: 160     Grid row number: 34 

                                 TPMa in the x-direction                                         TPM in the y-direction   

Soil type   1        2        3        4        5        6       7               1        2        3        4        5        6       7 

     1         .838   .030   .055   .010   .046   .012   .009         .838   .023   .068   .003   .048   .012   .008 

     2         .202   .614   .019   .013   .133   .006   .013         .173   .669   .000   .000   .135   .015   .008 

     3         .098   .004   .804   .009   .023   .051   .011         .103   .012   .801   .012   .013   .050   .008 

     4         .033   .000   .041   .633   .131   .077   .086         .041   .012   .016   .592   .114   .102   .122 

     5         .050   .010   .002   .014   .849   .049   .025         .067   .013   .003   .014   .835   .042   .027 

     6         .029   .000   .051   .025   .083   .732   .080         .028   .003   .050   .048   .107   .708   .056 

     7         .040   .000   .004   .055   .139   .090   .672         .031   .007   .007   .051   .113   .109   .682 
a Transition probability matrix. 
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Figure 3   Simulated realizations of a soil map with 7 classes using the CMCxy model under different conditioning 

schemes. Symbols of realizations represent the model used and numbers of survey lines in the y-direction and x-

direction. Corresponding survey line intervals for the four realizations from the second to the last one are 

approximate 2000m, 1000m, 500m and 250m. Scales on the original map represent grid numbers. 

 

Simulated realizations under different conditioning schemes (they are also the sampling schemes) are 

given in Figure 3. The survey line intervals used for this conditional simulation are approximately 2000m, 

1000m, 500m, and 250m, respectively for the four conditioning schemes, i.e., 5×2, 9×3, 17×5, and 33×8, 

which represent the survey line number in the y direction and the line number in the x direction (see the 
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realization symbols in Figure 3). We can see that when the survey line interval is long the patterns in 

simulated realizations (see Figure 3, CMCxy-5×2 and CMCxy-9×3) are not reasonable: parcel inclination is 

clear, at some places the steep parcel disconnectedness appears, and major soil types (e.g., type 1 and 5) 

are over-predicted. But when the density of survey lines increases, i.e., decreasing the survey line interval, 

simulated soil patterns gradually become close to the reference map. The realization with a 250m survey 

line interval (see Figure 3, CMCxy-33×8) resembles the reference map well, except for some very fine 

features. The parcel inclination artifact is not completely eliminated even with a very high density of 

survey line data (see the saw-teeth along the simulation direction in the left parts of the bottom two 

realizations in Figure 3).  

The occurrence probability maps of specific soil types (Figure 4), which are calculated from 100 

realizations, indicate that how possible one soil type predicted from survey line data occurs at each 

location. The parcel inclination problem also can be seen in some probability maps when survey lines are 

sparse. From the probability maps it can be seen that the minor soil type 3 (Figure 4, left column) is 

under-predicted and that the major soil type 1 is over-estimated when survey lines are sparse. But this 

problem gradually lessens with increasing the density of survey lines. Figure 5 gives the areal proportions 

of different soil types under different conditioning schemes. It can be seen that the predicted areal 

proportions of different soil types at the 250m survey line interval are close to the original data.  

Although the CMCxy model has difficulty to provide correct areal proportions of different soil types 

and the predicted soil type patterns have some simulation artifacts, the simulated results given in this 

study at survey line intervals of about or less than 500m should be useful for predictive soil mapping. 

They may not be suitable to be directly used as soil maps, however, with local soil experts’ help, high 

quality soil type maps may be generated based on the simulated results. Problem is that the required 

density of survey lines may be too high for real world soil surveys. But when the survey line interval is 

too big, e.g., 1000m or larger for this study case, the simulated results will be useless or even misleading.    
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Figure 4   Occurrence probability maps of soil type 3 and 1 using the CMCxy model under different conditioning 

schemes. Symbols represent the model used, survey line numbers in the y-direction and x-direction, and soil type. 
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Figure 5   Areal proportions of different soil types in simulated results using the CMCxy model under different 

conditioning schemes. Symbols represent the model used and survey line numbers in the y-direction and x-direction.  

 

Case two – an alluvial soil transect with 4 textural layer types   

The selected alluvial soil transect comes from the North China plain. It has a length of about 5250m and a 

depth of 2m, with four types of alluvial textural layers. The four types of layers, denoted as 1, 2, 3, and 4, 

account for 30.8%, 28.0%, 17.2%, and 24.0% of the whole transect area, respectively. So the type 3 

occurs infrequently relative to others, and the type 1 is contrary. These soil textural layers have strong 

horizontal extensions. Input parameters estimated from the soil transect are given in Table 2. 

 
Table 2   Input parameters estimated from the original alluvial soil transect 

                        States:  4       Grid column number: 310        Grid row number: 43 

                                         TPM a in the horizontal direction            TPM in the vertical direction   

Textural layer type          1           2            3             4                   1           2            3            4 

1                            .9731    .0057    .0106    .0106          .9196    .0041    .0411    .0352 

2                            .0013    .9781    .0053    .0153          .0211    .8741    .0240    .0808 

3                            .0216    .0100    .9632    .0052          .0790    .0384    .8358    .0468 

4                            .0140    .0105    .0070    .9685          .0822    .0542    .0273    .8363 
a Transition probability matrix. 

 

Because it is not suitable to assume that subsurface lateral information can be available, we only use 

the CMCx model to do this simulation. Figure 6 shows simulated realizations of the transect under 

different conditioning schemes, i.e., 4, 7, 17 and 32 boreholes, which correspond with borehole internals 

of about 1750m, 875m, 330m and 170m, respectively. It can be seen that when boreholes are sparse the 

simulated realizations clearly have the layer inclination tendency, and the minor (i.e., infrequent) layer 

type 3 is under-predicted. But when the density of boreholes is dense (see the bottom two realizations in 

Figure 6), the layer inclination problem is not clear. The complex spatial patterns of soil textural layers 

are effectively mimicked in the last realization with very dense borehole data. This situation also can be 

seen in the occurrence probability maps of layer type 2 and 3 in Figure 7.  

The occurrence probability maps of individual layer types show that different realizations under the 

same conditioning scheme are quite similar. The uncertainty of occurrence of each type of soil layers 

decreases with the increase of density of boreholes. The under-prediction of the minor layer type 3 under 

low densities of boreholes can be seen in the left column of Figure 7. Figure 8 displays the histogram of 

areal proportions of different layer types in simulated results by different densities of boreholes. 
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Obviously, it can be seen that layer type 1 and 3 are abnormally predicted when boreholes are not enough. 

With the predicted artifacts and the abnormal estimation of major and minor types, the simulated results 

with inadequate borehole data will be useless or misleading. Therefore, to produce useful or valuable 

subsurface soil layer data, borehole data must be adequate, i.e., the required density of boreholes should 

be guaranteed. In this simulation case, the borehole interval should be about 400m or less. This density 

may be a quite high requirement for field soil surveys over large areas.  
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Figure 6   Simulated realizations of an alluvial soil transect with 4 types of textural layers using the CMCx model 

under conditioning schemes. Symbols of realizations represent the model used and borehole numbers. 

Corresponding borehole intervals for the four realizations from the second to the last one are approximate 1750m, 

875m, 330m and 170m. Scales on the original map represent grid numbers. 
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Figure 7   Occurrence probability maps of soil textural layer type 2 and 3 using the CMCx model under different 

conditioning schemes. Symbols of realizations represent the model used, borehole numbers, and layer type.  
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Figure 8   Areal proportions of different soil textural layer types in simulated results using the CMCx model under 

conditioning schemes. Symbols represent the model used and borehole numbers.  

 

Discussions  
From the above simulated results, we can see that the CMC method with suitable extensions (i.e., CMCx 

for vertical transects and CMCxy for surface soil class maps) indeed can capture the spatial patterns of 

categorical soil variables if there is a set of densely measured line-data available. But if the density of 

line-data is low, three constraints appear, which include (i) under-prediction of minor/small states, (i) 

parcel (or layer) inclination along the simulation direction, and (iii) parcel (or layer) disconnectedness 

along survey lines (or boreholes). There is no doubt that the CMC method has important values due to its 

ability to capture major subsurface lithological layers, and it is also true that the so-called constraints of a 
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method are actually relative to different application purposes. But it would be very desirable to have such 

an efficient model also being able to reproduce spatial patterns of categorical (not just soil) variables with 

correct proportions of all states and without the prediction artifacts under low densities of line-data; after 

all,  sparse data are the usual cases in the real world applications.  

The parcel/layer inclination is clearly related with the simulation ordering, i.e., from one corner to 

another diagonal corner row by row. Koltermann & Gorelick (1996) ever mentioned the two difficulties 

in applying Markov chains to multi-dimensional simulation: one is the difficulty of conditioning on multi-

boundaries, and the other is the ordering problem, as stated: “Unlike one-dimensional application of 

Markov chains, two- and three-dimensional applications are difficult because there is not an easily 

identifiable ordering of values in a past-present-future sequence (A. G. Journel, personal communication 

1995)” (Koltermann & Gorelick, 1996, pp.2631). With the extensions of conditioning on well/borehole 

data or survey-line data, it can be seen that the CMC method has preliminarily resolved the problem of 

conditioning on measured data. But the ordering problem is not addressed, which results in an asymmetric 

simulation algorithm in the CMC model and the difficulty of retaining class parcel anisotropies in 

realizations. The parcel inclination is always along the simulation direction, i.e., parcels are inclined from 

top-left to bottom-right if the simulation is along this direction, or inclined from top-right to bottom-left if 

the simulation ordering is changed to this direction (Li, 1999). If layers (or parcels) are naturally inclined 

along the simulation direction (i.e., the so-called preferred inclination), their anisotropy might be well 

maintained (See the hypothetical example in Elfeki & Dekking (2001)). The MRF method (Norberg et al., 

2002) avoids this ordering problem by using a very time-consuming iterative algorithm.  

The parcel/layer disconnectedness along survey lines (or boreholes) similarly results from the 

simulation ordering, although using line-data for conditioning may be also part of the reason. The steep 

side of a parcel is always the left side of the parcel if the simulation ordering is from top-left to bottom-

right, and vice versa. This problem is strong in the CMC0 (Li, 1999), but mitigated by conditioning on 

line-data as “future” states in the CMCx and CMCxy. However, when survey lines (or boreholes) are 

sparse, this artifact still occurs. 

As to the under-prediction of minor states (correspondingly, the over-prediction of major states), we 

think the main reason may be the full independency assumption of the two one-dimensional Markov 

chains in the x and y directions that was used to derive the model. Similar problem also occurs in the 

MRF model of Norberg et al. (2002) but the reason is not sure. They thought that multi-dimensional 

Markov chains themselves may have the tendency of over-estimating spatial dependencies of classes. If 

this is the case, the over-estimated spatial dependencies should be rather the auto-correlations than the 

cross-correlations of classes. 

Although all these three constraints can lessen with increasing the conditioning data, the required data 

density for a satisfied simulation is usually not realistic for many soil survey datasets. The under-

estimation of minor/small states is a big problem unless users’ attention is the major states. The prediction 

artifacts, particularly the parcel/layer inclination, will also disqualify the simulated data when surveyed 

line-data for conditioning a simulation is not adequate. Therefore, resolving or further lessening these 

constraints in the CMC method will be the key tasks to raise the model to a widely applicable level for 

characterizing categorical soil variables.  

Additionally, from a large number of simulations we did, we found that the CMCx produces worse 

results than the CMCxy for simulating soil classes even with dense survey lines (Of course, it is also not 

necessary since we can use the CMCxy); this is easy to understand because there is no other data in the y-

direction being conditioned except for one necessary boundary. But the CMCx model aims to work for 

simulating soil transects with a number of densely distributed boreholes. The obvious fact is that soil 

layers have strong extension in the lateral direction (i.e., a large ratio of layer length to width) but soil 

class parcels on ground surface usually have no such a characteristic. Elfeki & Dekking (2001) also 

demonstrated that major lithofacies layers can be captured when the layers are very thin and long (almost 

across the whole transect) with a number of well data. The reason may be that the strong extension of 

subsurface layers in the lateral direction results in a strong influence of borehole data (i.e., the strong 
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auto-correlation in the lateral direction, which reflects on the TPM in the lateral direction with very large 

diagonal probability values pii).  

 

Conclusions 
The CMC method is evaluated for their possible application to characterize spatial heterogeneity of soil 

classes and layers. Results show that with a set of densely measured (or surveyed) line-data for 

conditioning simulations the complex spatial patterns of categorical soil variables – surface soil types 

(using CMCxy) and subsurface soil textural layers (using CMCx) can be mimicked with abrupt boundaries 

and approximate anisotropies. However, when the density of line-data becomes relatively low, the 

simulation effectiveness decreases and realizations become unrealistic. Three obvious constraints can be 

identified from simulated results when the conditioning line-data are relatively sparse. These constraints 

include the parcel/layer inclination, the under-prediction/estimation of minor/small states, and the 

parcel/layer disconnectedness in simulated realizations. The possible reasons for these shortcomings are 

discussed. The CMC method is efficient because of the non-iterative simulation; in this study, generating 

100 realizations of the soil type map needs only about 15 to 20 minutes on a PC, and only several minutes 

are needed for producing 100 realizations of the alluvial soil transect.    

Because the required density of survey line or bore data for producing reasonable realizations, 

particularly satisfactory spatial patterns, of categorical soil variables is normally quite high, and the 

datasets in real world applications usually may not reach to such a density, this method at its current stage 

still has difficulties to meet our needs for predictive soil mapping. If random sample point data were used, 

the required sample density for producing reasonable realization maps would have been much higher. 

Therefore, further efforts are needed to solve its drawbacks and eliminate its prediction artifacts.  
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