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Abstract

 

Complex categorical variables are usually classified into many classes with interclass
dependencies, which conventional geostatistical methods have difficulties to
incorporate. A two-dimensional Markov chain approach has emerged recently for
conditional simulation of categorical variables on line data, with the advantage of
incorporating interclass dependencies. This paper extends the approach into a
generalized method so that conditional simulation can be performed on grid point
samples. Distant data interaction is accounted for through the transiogram –
a transition probability-based spatial measure. Experimental transiograms are
estimated from samples and further fitted by mathematical models, which provide
transition probabilities with continuous lags for Markov chain simulation. Simulated
results conducted on two datasets of soil types show that when sufficient sample data
are conditioned complex patterns of soil types can be captured and simulated
realizations can reproduce transiograms with reasonable fluctuations; when data are
sparse, a general pattern of major soil types still can be captured, with minor types
being relatively underestimated. Therefore, at this stage the method is more suitable
for cases where relatively dense samples are available. The computer algorithm can
potentially deal with irregular point data with further development.

 

1 Introduction

 

Spatial heterogeneity is a typical feature of categorical spatial soil variables, such as soil
types. Here categorical spatial soil variables mean mutually exclusive classes, as delineated
in area-class maps. Acquiring information about these kinds of variables is a basic
requirement for humans to manage natural resources and study environmental problems
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at regional scales. Due to the effect of spatial heterogeneity of categorical soil variables
on ecological and hydrological processes, their quantification is also necessary to assess
effectively these processes. Note that the term 

 

class

 

 is used below to generally represent
a category.

Soil area-class maps are normally interpreted from field survey data. Spatial uncer-
tainty inevitably arises in the processes of data interpretation and boundary delineation
because of the scarcity of observed data, as discussed by Mark and Csillag (1989),
Goodchild et al. (1992), and Shi et al. (1999), for example. Conditional (to observed
data) simulation using random field models has been recognized in the geosciences as a
feasible approach, not only for spatial distribution prediction but also for spatial uncer-
tainty assessment of discrete variables (Goodchild et al. 1992, Deutsch and Journel
1998). However, simulating categorical variables is not an easy task. Variogram-based
sequential indicator kriging methods have been used widely as a practical approach for
conditional simulation of thresholds (or cutoffs) of continuous variables. With an anal-
ogy between a class and a threshold (i.e. coding a class as indicator 1 for occurrence and
0 for non-occurrence at every location), indicator kriging methods have also been
applied to categorical geographical variables in some case studies; examples, though
remaining scarce, can be found in Bierkens and Burrough (1993), Goovaerts (1996),
Miller and Franklin (2002), and Zhang and Goodchild (2002). However, as discussed
by many geostatistical experts (e.g. Goovaerts (1996), Deutsch and Journel (1998,
p. 86), and Atkinson (2001)), conventional geostatistical methods have difficulties
accounting for interclass dependencies (including cross-correlations); therefore, inter-
class dependencies are normally ignored in conventional geostatistical algorithms. While
interdependencies between cutoffs of continuous variables or classes of simple categor-
ical variables may be trivial or not a concern, interdependencies between classes of some
complex categorical variables may be prominent (Zhang and Li 2005). For example,
some soil types are geographically associated. Occurrence of one class will inevitably
affect the occurrence of associated classes in its vicinity. Therefore, incorporating inter-
class dependencies is crucial to capture effectively the complex pattern of soil classes and
because it also makes better use of the spatial variation information conveyed by the
sampled data. Without incorporating interclass dependencies in a simulation, this char-
acteristic of categorical soil variables is difficult to reveal in simulated results. Reflecting on
geostatistical measures, ignoring interclass dependencies leads to poor reproduction of
cross-variograms (see Goovaerts 1996).

Interclass dependencies not only include cross-correlations that can be measured
by indicator cross-variograms, but also include the juxtaposition relationships and
directional asymmetries of spatial distribution of multinomial classes, which are not
effectively captured by indicator cross-variograms because of their intrinsic symmetric
property. Markov cross transition probabilities have the capability of representing
interdependencies of multinomial classes (Carle and Fogg 1997, Zhang and Li 2005).
Markov chains were traditionally used in one-dimensional (1-D) simulations in geology
(Harbaugh and Bonham-Carter 1970), ecology (e.g. Balzter 2000), soil science (e.g. Li
et al. 1999), and other fields. Multidimensional (multi-D) applications of Markov chains
for unconditional simulations can be traced to Krumbein (1968). Recently, multi-D
nonlinear Markov chain models for conditional simulation have emerged in the
geosciences (Elfeki and Dekking 2001, Li et al. 2004). Existing models, despite having
limitations and lacking wide practicality, offer some special features that are desirable
for simulating categorical spatial variables with the incorporation of interclass dependencies.



 

Markov Chain Simulation of Categorical Variables

 

653

 

© 2006 The Authors. Journal compilation © 2006 Blackwell Publishing Ltd

 

Transactions in GIS

 

, 2006, 10(4)

 

When sufficient survey line data are available, the 2-D Markov chain model described
by Li et al. (2004) can effectively reproduce both auto-variograms and cross-variograms,
and generate imitative large-scale patterns of soil types and land cover classes (Zhang
and Li 2005). 

Categorical spatial soil variables such as soil types are usually composed of many
nominal classes. Major characteristics of soil types may include: 

 

• Complex cross-correlations.

 

 As shown in Li et al. (2004), the cross-variograms
between soil types are complex and difficult to describe using classical variogram models. 

 

• Juxtaposition tendencies.

 

 For example, class 

 

A

 

 and class 

 

B

 

 may frequently occur as
neighbors, and class 

 

A

 

 and class 

 

C

 

 may never occur as neighbors. To respect these
juxtaposition relationships, Markov transition probabilities may be a better choice
than covariances because transition probabilities are normally asymmetric. 

 

• Directional asymmetry.

 

 For example, classes 

 

A

 

, 

 

B

 

, and 

 

C

 

 may occur as a sequence
of 

 

ABC

 

 along a direction (e.g. west-to-east). This asymmetry can be captured by
unidirectional Markov transition probabilities along that direction and thus reflected
in realizations (Carle and Fogg 1997, Zhang and Li 2005). 

 

• Abundance of classes.

 

 For example, there may be dozens of different soil types (e.g.
soil series) occurring in a watershed stretching over dozens of square kilometers
(USDA 1962). Using iterative simulation methods (e.g. simulated annealing) with
consideration of cross-correlations, or solving a large cokriging equation system to
deal with a large number of soil classes may be impractical in terms of computation
time, numerical stability, and order relations. However, Markov chain models have
no obvious computation limitation on the number of involved classes (Li et al. 2004)
and also do not suffer order relation problems. 

 

• Large-scale or long-range patterns.

 

 Soil types normally exhibit large-scale or long-
range patterns. As discussed by Gray et al. (1994), Tjelmeland and Besag (1998), and
Wu et al. (2004), conventional Markov random field models that use small neigh-
borhoods and cliques have difficulties generating large-scale patterns and accounting
for anisotropies (note that a clique means a configuration of adjacent neighbors).
The spatial continuity of large-scale patterns is also not well represented in realizations
generated by conventional indicator methods, as discussed in Ortiz and Deutsch
(2004). However, multi-D Markov chain models are more capable in this instance
(see Zhang and Li 2005). 

Considering all of these issues, Markov chain methods that are both efficient in
computation time and effective in accounting for complex interclass dependencies
would be desirable for simulating soil classes. In fact, these are exactly the driving forces
of the development of Markov chain-based multi-D conditional simulation models in
recent years, despite the fact that accounting for all of these issues in one approach is
never easy. Although significant progress has been made, this approach still has limited
functions and can only work with line data (borehole logs or survey lines). This is
caused mainly by two reasons: the lack of suitable simulation algorithms and the
difficulty of estimation of transition probabilities from point samples. Making the
multi-D Markov chain approach more versatile, e.g. making it work with point data,
needs further exploration. That is the purpose of this study. 

In this paper, we extend the work of Li et al. (2004) into a generalized Markov
chain model to enable conditional multi-D Markov chain simulation on point data. We
use transiograms (i.e. 1-D transition probability diagrams; see Li (2006a)) to estimate
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transition probabilities with continuous lags from point data and provide transition
probability input to the simulation model. This paper is mainly focused on the following
aspects: (1) using transiograms to generalize the 2-D Markov chain model, which
previously used transition probability matrices as parameter input and only worked
with survey line data; (2) applying transiogram models to Markov chain simulation;
and (3) designing a simulation algorithm (i.e. procedure) for conditional Markov chain
simulation on grid point data. With further development, this algorithm potentially may
accept irregular point data by rotating the so-called cardinal directions. Such a Markov
chain-based geostatistical approach is also applicable to categorical (or discrete) variables
in other fields such as land-cover classes and provides an alternative to indicator kriging
for simulating categorical variables with incorporation of interclass dependencies. Section
2 introduces the generalized Markov chain approach, including transiogram modeling.
In section 3, case studies based on two regular point datasets of soil types are provided
to demonstrate the potential use in soil type simulation and remaining constraints of the
extended approach, and transiogram analyses of simulated realizations are conducted to
show whether the approach reproduces the spatial variation structures of sample data
described by transiograms. Section 4 recaps the major arguments and notes several ideas
in terms of future work.

 

2 Methods

 

2.1 The Transiogram

 

Multi-D transition probabilities that involve more than two adjacent points are difficult
to estimate from sample data (e.g. lines or points). Therefore, multi-D transition prob-
abilities that are estimated from original images and used in Markov mesh models for
image analysis (see Wu et al. 2004) have not been used in conditional simulation in the
geosciences. 1-D one-step transition probabilities can be easily estimated from line data
(e.g. borehole logs, survey lines). Based on the first-order Markovian assumption, 1-D
multi-step transition probabilities can be calculated from one-step transition probabilities.
Both Elfeki and Dekking (2001) and Li et al. (2004) use only one-step transition
probabilities (i.e. transition probability matrix) as model input and calculate multi-step
transition probabilities from one-step transition probabilities in the simulation process.
Carle and Fogg (1997) suggested using the transition rate matrix method (Krumbein
1968) to infer continuous transition probability models from one-step transition
probabilities and estimated mean boundary spacings (e.g. mean lengths of hydrofacies)
for hydrofacies modeling. These methods are simple but have some shortcomings. One
problem is that directly estimating one-step transition probabilities from point data is
not feasible. Unlike subsurface survey conducted by drilling boreholes, point sampling
is used more widely on the surface (or in the horizontal dimensions). The second problem
is that they are based on the first-order Markovian assumption and thus have an intrinsic
constraint that assumes boundary spacing (e.g. class polygon lengths, layer thickness) to
be exponentially distributed. Boundary spacings of categorical variables may not always
be exponentially distributed. For example, the boundary spacings of lithofacies and soil
layers usually tend to be lognormally distributed (Krumbein 1968, Li et al. 1997). The
third problem is that the non-Markovian property of sample data cannot be reflected
on transition probabilities derived from methods based on the first-order Markovian
assumption. 
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Considering the aforementioned three reasons, as long as some samples are available,
it is better to estimate continuous (i.e. one-step to 

 

N

 

-step) transition probabilities
directly from data. Estimation of 1-D two-point continuous transition probabilities
from observed data with model fitting is feasible. It is just not as well established as the
estimation of variograms. The transiogram

 

 

 

concept is therefore suggested as a spatial
continuity measure to provide the flexibility for transition probability estimation from
data and the direct input to multi-D Markov chain models (Li 2006a, b). As a transition
probability-based spatial continuity measure, transiograms differ from indicator variograms.
A transiogram is defined as a 1-D two-point transition probability diagram over the
lag 
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Here the Markov chain (i.e. the random variable) 

 

Z

 

 is assumed spatially stationary, that
is, 

 

p
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) is dependent only on the lag 
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 and not dependent on the specific locations 
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.
An auto-transiogram
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) represents the self-dependence (i.e. auto-correlation) of single
class 
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 and a cross-transiogram
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. Here class 
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 is called a head class and class 

 

j

 

 is called a tail class. Because of the
asymmetry of transition probabilities, cross-transiogram
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). A
specific study on the properties and features of transiograms is given in Li (2006b). 

 

2.2 The Generalized Markov Chain Model

 

The 2-D triplex Markov chain (TMC) model described by Li et al. (2004) is based on
an idea of conditioning on four nearest known neighbors along four cardinal directions,
e.g. north, south, east and west. The coupled Markov chain idea, particularly the idea
of conditioning a 1-D Markov chain on a known state ahead, suggested by Elfeki and
Dekking (2001), is used to implement the model. Instead of re-addressing the coupled
Markov chain model and the triplex Markov chain model here, we refer readers who
have the interest of tracing the model background to the published papers. 

The TMC model can be simply generalized as the following equation: 
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where 

 

m

 

 represents all of the observed and previously simulated data in the study area;
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 and 

 

z
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 represent the four nearest known neighbors in the four cardinal
directions of the unknown location 

 

z

 

(

 

u

 

) to be estimated (Figure 1). These four nearest
known neighbors, one in each direction, may be located distantly from the unknown
one to be estimated. It is not necessary that they are adjacent. They may be sampled
data or previously simulated points. 

Based on Equation (2) and the transiogram concept given in Equation (1), we can
rewrite the Markov chain model in Li et al. (2004, p. 1481, Equation [3]) into:
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where superscripts x and y represent the axis directions; labels k, l, m, q, o and f all
represent the states of the Markov chain at related locations; and h1, h2, h3, and h4

represent the distances (or numbers of spatial steps) from the four nearest known neighbors
to the current unknown location, respectively (see Figure 1). One-step and multi-step
transition probabilities are not used here anymore. On the contrary, any pij(h) represents
a continuous transition probability diagram from class i to class j over a lag h, i.e. a
transiogram. Here h can be an exact distance (e.g. meters), or for raster data the number
of pixels. We will use numbers of pixels as h later in this paper and thus we need not
be concerned with the pixel size. For non-raster data, it is better to use exact distance
measures. 

Equation (3) is the generalized Markov chain model for conditional simulation. It
is generalized because: (1) any conditioning point is not required to be adjacent, and (2)
it directly uses transiograms as parameters. Such approaches are conventionally called
“nonparametric”, because they are free of statistical assumptions such as the normal
distribution and the first-order Markovian property. Apparently, the model is a nonlinear
combination of many transiograms in different directions. Because Equation (3) provides
the explicit solution of the conditional probability distribution (CPD) of an unsampled
location, the model is efficient in computation cost. 

1-D conditional Markov chain models may be useful in some situations such as
simulating an outer boundary. A 1-D model conditioned on two nearest known neighbours
can be obtained by simplifying Equation (3), i.e. deleting the transition probabilities in
one direction, as: 

(4)

where zleft and zright represent the two nearest known neighbors in opposite directions of
the unknown z(u) to be estimated. In addition, the simplest 1-D Markov chain model, i.e.
the one-step transition probability plk, may also be used in simulating outer boundaries.

Figure 1 The generalized two-dimensional Markov chain model. Solid cells represent
known locations in cardinal directions. The empty cell represents the unknown location to
be estimated. h1, h2, h3, and h4 stand for the distances from the current unknown location
to the four nearest known neighbors in the cardinal directions. k, l, m, q, and o denote states
of the five locations (as shown in Equation 3). The dashed arrows represent interactions and
transition probability directions
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2.3 Transiogram Inference

Transiograms can be estimated from data through two steps: (1) first estimating transition
probabilities with different lag h (i.e. estimating experimental transiograms); and
(2) then fitting the experimental transiograms with mathematical models and expert
knowledge. Thus, transition probabilities at any distances can be acquired from fitted
transiogram models. 

To guarantee that at any lag h all transition probabilities involving the same head
class (i.e. class i in pij(h)) sum to 1, we need always leave one transiogram (e.g. pik(h))
not model-fitted and infer it by: 

(5)

where n is the number of classes (Li 2006b). Otherwise, the constraint condition of
summing to 1 may be easily violated in the processes of model fitting. To guarantee that
pik(h) be non-negative and well-fitted with the experimental transiogram, the model
fitting process of other transiograms may need repetitive tuning. 

There are quantitative relations between pij(h) and proportions of individual classes.
The sill of pij(h) is theoretically equal to the proportion pj of the tail class j (see Carle
and Fogg 1997). The equality between sills of transiograms and proportions of tail
classes provides a guide to model fitting, because proportions can be approximately
estimated from observed data and expert experience about the study area. The exponential
model and the spherical model are often used to model auto-variograms in geostatistics
(Deutsch and Journel 1998). Here we also use these two basic models to model transi-
ograms. For modeling auto-transiograms, the exponential model is adapted to: 

pii(h) = 1 − (1 − pi)[1 − exp(−3h/ai)] (6)

where pi is the proportion of class i, serving as the sill, and ai is the practical auto-
correlation range (Ritzi 2000, Li 2006b). For modeling cross-transiograms, the
exponential model can be adapted to: 

pij(h) = pj[1 − exp(−3h/aij)] (7)

where pj is the proportion of class j, serving as the sill, and aij is the practical cross-
correlation range (Li 2006b). In Equations (6) and (7), the sill is explicitly set to the
proportion of the tail class. Other mathematical models, such as spherical and Gaussian
models may follow the same way in defining sills. 

If anisotropies and asymmetries of spatial distribution of classes are not considered,
transition frequencies in different directions may be pooled together to get omni-
directional transiograms. Otherwise, transiograms need be estimated unidirectionally,
for example, west-to-east, or south-to-north, which of course needs more data to get
reliable experimental transiograms.

2.4 Simulation Algorithm

Monte-Carlo simulation is used to generate realizations. The simulation procedure con-
sists of the following steps (Figure 2):

p h p hik ij
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• Step 1: Simulate outer boundaries using 1-D Markov chain models. When there are
known data ahead, use Equation (4). When there are no known data ahead, use
one-step transition probabilities.

• Step 2: Connect all neighboring observed data points that are not connected
by simulation in Step 1 using Equation (3), so that simulated lines form a
network. 

• Step 3: Within each mesh formed by simulated lines, perform simulation row by row
from top to bottom still using Equation (3). 

The above procedure ensures that when estimating one unsampled location in a
mesh formed by simulated lines, there are no close known neighbors in off-cardinal
directions. Here the so-called cardinal directions in the model refer to just four orthogonal
directions and that they may be rotated. So the above algorithm is potentially applicable
to randomly distributed point data.

Simulation path is important in 2-D Markov chain simulation because it is
related to the directional effect (i.e. simulated patterns are inclined along the simulation
direction). When simulating large-scale patterns, directional effect not only occurred
in the coupled Markov chain model suggested by Elfeki and Dekking (2001), but also
occurred in Markov mesh models that were developed for image analysis, as demon-
strated by Gray et al. (1994). Note that Markov mesh models are inappropriate for
conditional simulation on sample data. To deal with the directional effect caused by
asymmetric neighborhoods, the triplex Markov chain model is composed of two
extended coupled Markov chains with an alternate advancing (AA) path (see Li et al.
2004). Along the AA path, the two coupled Markov chains move alternatively in opposite
directions row by row (or column by column) (see Figure 3) and thus overcome the
directional effect; at the same time, the model imposes balanced influences of known data
(simulated or observed) at both (left and right) sides to the estimate of the unsampled
location and therefore increases the simulation effectiveness. The AA path essentially
also represents a solution to Markov mesh models for overcoming the directional effect.
In the above procedure, the AA path is used in both making the network and filling
meshes.

Figure 2 The simulation procedure: (a) sample points, (b) simulating outer boundaries, (c)
connecting internal sample points, and (d) filling in each mesh
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3 Simulation Examples and Discussions

3.1 Datasets

We used two small sampled datasets – one dense dataset and one sparse dataset, to
conduct simulations for demonstrating the potential use and possible constraints of the
method. The dense dataset is composed of 136 points and the sparse one contains only
45 points. Both are regularly distributed in the same rectangular study area, which is
located in a river basin of Belgium with an extent of 4 × 1.7 km. The soil is classified
into seven soil types (or classes) by merging similar soil series for clarity of presentation
(see Li et al. 2004, p. 1482). Simulations are performed by conditioning on each set of
data and using the AA path.

The study area is discretized into an 80 × 34 grid with a pixel size of 50 m, a coarse
spatial resolution, so that each pixel (including observed pixels) can be seen clearly. All
of the images were prepared using ESRI’s ArcMap so that pixels and polygons are
displayed exactly without boundary smoothing.

3.2 Experimental Transiograms and Fitted Models

Experimental transiograms were estimated from the dense dataset. Note that regular
data were more efficient for estimating transiograms in the cardinal directions. Consid-
ering that the dense dataset (136 regular points) was small for seven soil types, we
pooled transition frequencies in the four cardinal directions together to get only one set
of experimental transiograms – seven auto-transiograms and 42 cross-transiograms.
This means we did not consider anisotropies and directional asymmetry of class
sequences. But cross-transiograms are normally asymmetric, i.e. pij(h) ≠ pji(h). Figure 4
shows the seven experimental transiograms headed by soil type 1 and fitted models.
Apparently, experimental transiograms have complex shapes. However, it is clear that
these experimental transiograms indeed reflect corresponding proportions of all classes
(the sill of each fitted model provided here is set to the proportion of the corresponding

Figure 3 The alternate advancing simulation path: thick arrows represent simulation pro-
ceeding directions; and thin arrows represent interactions of the unknown location with its
four nearest known neighbors in cardinal directions
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tail class in the sampled dataset). We used two basic models – the exponential model
and the spherical model to fit all of the experimental transiograms, except for the “left
one” in each subset headed by one common class, which was calculated using Equation
(5). Correlation ranges and curve shapes of models were approximately interpreted from
corresponding experimental transiograms, and sills were all set to the proportions of
corresponding soil types in the dense dataset. Apparently, the fitted models only approx-
imately capture some general trends and ignore many details. To capture more details
of experimental transiograms, particularly the peaks and troughs, complex models are
required, which need further studies. However, overfitting to details of experimental
transiograms may not always be necessary or preferable. Except for a large workload,

Figure 4 Experimental transiograms headed by soil type 1 and their fitted models, esti-
mated from the dense dataset (i.e. 136 points). Sills are set to the proportions of correspond-
ing tail classes in the dense dataset
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some details may be just noise resulting from the deficiency of sample data. All 49 fitted
transiogram models were used as transition probability inputs to simulations.

The sparse dataset of 45 points was too small to provide reliable experimental
transiograms of seven soil types for model fitting. Considering both datasets came from
the same area, they should contain similar spatial variation information. Therefore, the
auto-transiogram and cross-transiogram models fitted from the dense dataset were used
for the conditional simulation on the sparse dataset. 

3.3 Simulated Results

One hundred realizations were generated in each of the two simulations and probability
maps for each simulation were estimated from those realizations. Figure 5 shows some
simulated results conditioned on the dense dataset. Both the simulated realizations
(Figures 5c, d) and the prediction map based on maximum occurrence probabilities
(Figure 5b) effectively capture all of the seven soil types, which are also reflected in the
dataset (Figure 5a). Occurrence probability maps of single soil types (e.g. Figure 5f) indicate
that the occurrence location of a soil type is not certain, and the probability values provide
information on the trend of occurrence of the soil type in the study area. The maximum
occurrence probability map (Figure 5e) clearly demonstrates the predicted transition
zones between different soil types. The capture of transition zones in the maximum
probability map is remarkable in spatial uncertainty representation. It provides useful
information about the spatial uncertainty of soil polygons in the predicted map. These

Figure 5 Simulated results based on the dense dataset: (a) the 136 points; (b) the prediction
map based on maximum occurrence probabilities; (c) and (d) two realizations; (e) the maxi-
mum occurrence probability map estimated from 100 realizations; and (f) the occurrence
probability map of soil type 3
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features shown in simulated results should be largely attributed to the incorporation of
interclass dependencies. 

Figure 6 shows some simulated results based on the sparse dataset. Obviously, only
a general pattern is captured in the prediction map and realizations due to the sparseness
of the conditioning data and some details displayed in Figure 5 are not shown here.
However, the probability maps still provide attractive information – the possible occur-
rence locations of single classes and the transition zones between major soil types. It is
clear that some minor soil types such as types 2, 4 and 7 are relatively underestimated
in realizations.

Figure 7 provides the proportion data of the seven soil types, estimated from
conditioning datasets and realizations. Simulated realizations conditioned on the dense
dataset basically reproduce the proportions of all seven soil types, although the tendency
of underestimation of minor types (corresponding to overestimation of some major soil
types such as type 5) can still be seen. The problem of underestimation of minor types
increases in the simulated realizations conditioned on the sparse dataset. Currently, this
is the major tradeoff of the approach to its incorporation of interclass dependencies and
its ability to deal with a large number of classes (though for clarity of presentation the
number of classes used here is not large). This issue is not unique to this approach. It
also occurs in simulated realizations using the Markov random field method (see Norberg
et al. 2002). Further study is necessary to theoretically overcome this problem in the
model. 

A typical characteristic of the Markov chain approach is that continuous large-scale
soil patterns (i.e. soil polygons with abrupt boundaries) are directly generated in

Figure 6 Simulated results based on the sparse dataset: (a) the 45 points; (b) the prediction
map based on maximum occurrence probabilities; (c) and (d) two realizations; (e) the max-
imum occurrence probability map estimated from 100 realizations; and (f) the occurrence
probability map of soil type 3



Markov Chain Simulation of Categorical Variables 663

© 2006 The Authors. Journal compilation © 2006 Blackwell Publishing Ltd
Transactions in GIS, 2006, 10(4)

simulated realizations. This differs from indicator geostatistical approaches such as the
sequential indicator simulation, which normally generate dispersed patterns (see Deutsch
and Journel, 1998, p. 307). Recently, based on the triplex Markov chain model, a
probability vector approach was suggested by Li et al. (2005). The probability vector
approach can also generate dispersed patterns by visualizing probability vectors calcu-
lated using the Markov chain model (or estimated from a large number of realizations
simulated by the Markov chain model), similar to those generated from the sequential
indicator simulation approach. Figure 8 shows some realizations visualized from
probability vectors estimated from 100 simulated realizations generated by the
generalized Markov chain model presented in this paper. These realizations do not have
clear polygons. However, realizations visualized from probability vectors and those
directly generated by the Markov chain model have no statistical difference, as shown
in Li et al. (2005).

This approach may find its usefulness for predictive soil mapping in flatter areas,
where soil-landscape models that infer soil types from environmental factors (e.g. Zhu

Figure 7 Proportions of different soil types in the datasets and simulated realizations: R-01
means the first realization; R-10 means the tenth realization; and the average values are
computed from 100 realizations
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et al. 1996) may not work effectively but observing a relatively dense dataset of soil
types in the field is usually feasible. The sparse dataset is intentionally used here to
demonstrate the constraint of the approach at the current stage. In general, when using
this method to simulate the distribution of soil types, users should anticipate the data
density issue and try to observe more data, because more data also means more details
are captured in simulated realizations. In addition, post-processing methods such as
simulated annealing may be used to improve the reproduction of proportions of classes
in single realizations, as demonstrated by Goovaerts (1997, pp. 427–9). Therefore, post-
processing may serve as a choice to improve the realizations generated by this Markov
chain approach, if a single realization is needed as data input to other studies. 

3.4 Transiogram Analysis

Li et al. (2004) and Zhang and Li (2005) have conducted indicator variogram analyses
on the simulated realizations of soil types and land cover classes generated by the pre-
vious Markov chain model that uses survey line data for simulation. Considering that
transiograms have been used in this study, we conduct transiogram analysis to check
whether simulated realizations can reproduce the spatial structure of soil types described
by transiograms. 

Figure 9 shows transiograms headed by soil type 1, estimated from the first 10
realizations conditioned on the dense dataset. Interestingly, these transiograms not only
approximately match the input models at short lags, but also have an obvious tendency
to follow the shapes of experimental transiograms. This is understandable because the
conditioning data are also inputs to the simulation. This also implies that conditioning
data plays a significant role in simulations using the Markov chain approach. The 10
simulated transiograms fluctuate around the experimental transiograms. The fluctuations
are reasonable as “ergodic fluctuations” (see Deutsch and Journel 1998, pp. 128–32,
for further discussion of ergodic fluctuations in kriging simulation). Figure 10 shows

Figure 8 Realizations visualized from probability vectors: (a) and (b) conditioned on the
dense dataset (136 points); (c) and (d) conditioned on the sparse dataset (45 points)
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simulated transiograms with the head soil type 1, estimated from the first 10 realizations
conditioned on the sparse dataset. Similar fluctuations are demonstrated on these
simulated transiograms. 

Although transiograms estimated from realizations follow the shapes of corres-
ponding experimental transiograms, it is apparent that their sills may be different. In the
transiograms based on the sparse dataset (Figure 10), simulated transiograms related to
tail classes 2, 4, and 7 have lower sills than the corresponding experimental ones, and
the opposite situation occurs on the simulated transiograms tailed by class 5. This is
because sills of transiograms are the direct reflection of tail class proportions (Li 2006b).

Figure 9 Simulated transiograms headed by soil type 1, estimated from the first 10 simulated
realizations conditioned on the dense dataset 
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Therefore, whether a class is underestimated or overestimated in a realization and the
extent of anomalous estimation can be directly revealed by the sills of simulated transi-
ograms tailed by that class. This direct relationship between sills and tail class propor-
tions is unique for transiograms (Li 2006b). It seems that this mismatch on sills does
not obviously affect other features of simulated transiograms, such as correlation ranges
and general curve shapes. Of course, except for sills, detailed differences exist between
the simulated transiograms shown in Figures 9 and 10 because they were conditioned
on different datasets. 

In general, the simulation examples show that the generalized two-dimensional
Markov chain approach introduced in this paper has the capability of simulating

Figure 10 Simulated transiograms headed by soil type 1, estimated from the first 10
simulated realizations conditioned on the sparse dataset
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complex patterns of categorical soil variables, while excessive sparseness of conditioning
data impacts the reproduction of correct proportions of minor classes. For specific
application cases, if important minor classes are involved and sparseness of data is
inevitable, post-processing techniques may be necessary to correct the proportions of
classes.

4 Conclusions

A generalized 2-D Markov chain approach is presented for spatial distribution prediction
and spatial uncertainty analysis of categorical soil variables. The generalized Markov
chain model extends the Markov chain model described in Li et al. (2004). Through
applying transiograms to the model and a designed simulation procedure, conditional
simulations can be performed on grid point data, which expands the application scope
of the approach. The application of transiograms with model fitting provides a versatile
approach for estimating transition probabilities with continuous lags from a variety of
data types and potentially capturing complex spatial variation of multinomial classes.
Simple simulation examples demonstrate the potential applications of this approach to
complex categorical soil variables. 

Simulated results conditioned on two point datasets demonstrate that the method
captures effectively the complex spatial patterns of seven soil types, but when data are
too sparse minor soil types are obviously under-represented in realizations. Probability
maps reveal some interesting information – the transition zones between different soil
types. Transiogram analyses are especially interesting: simulated transiograms apparently
follow the shapes of experimental transiograms which are estimated from the conditioning
dataset, not that of simplified fitting models; and underestimation (or overestimation)
of any class in a realization is revealed with the sills of simulated transiograms tailed by
that class. 

Within the context of indicator kriging, incorporating cross-correlations may not
increase the simulation effect substantially and the overhead involved may not be worth-
while (Journel 1983). However, it is known that effectively incorporating interclass
dependencies makes better use of the spatial information contained in sampled data and
it should be crucial to some complex categorical variables such as soil types that have
strong interclass dependencies. The remarkable capture of transition zones between
classes in maximum occurrence probability maps and the reproduction of cross-
transiograms in simulated realizations using the non-linear multi-D Markov chain
approach should be attributed to the incorporation of interclass dependencies in
simulation. This was exactly the driving force of the long-term efforts in developing the
multi-D Markov chain approach for simulating categorical variables. 

In general, the method is efficient and capable in the following aspects:

1. Efficient computation. The CPD function for each unsampled point is explicit.
Transition probabilities are directly drawn from transiogram models.

2. No apparent computation limitation on the number of classes in a simulation. This
is because increasing the number of classes does not change the CPD function. This
is desirable for dealing with a large number of classes that usually occur in soil
classification. Of course, a large number of classes means heavy workloads in
transiogram preparation (i.e. model fitting).
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3. Incorporation of class interdependencies through cross-transiograms. Thus, the
method captures more spatial correlation information conveyed by the same dataset
than methods that do not incorporate class interdependencies. Valid cross-transiograms
can be simply obtained without coregionalization.

4. The nonlinearity of the CPD function. A nonlinear approach may be preferable for
dealing with categorical data.

5. No order relation problem with this approach. 

Although our current computer algorithm works only with grid point data, potentially
it can deal with irregular point data with further development, for example, by rotating
the so-called cardinal directions. Future efforts will focus on solving remaining issues in
methodology and developing practical software systems for various data types. 
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